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ntroduction.

Given a germ X = {X,p) of an analytic space with an isolated singular
point p, one has a semi-aniversal deformation £ — B . It has the
property that all flat families over a space Z with X as special fibre
are induced by a map Z —B , which is unique on the level of tangent
spaces. The space B and the deformation £ —B are unique, but only
up to non-canonical isomorphism (see [Gra], [Pa], [Schi1], [BiD). The
space B is called the base space (of the semi-universal deformation)
of X.If X is a hypersurface, or more generally a complete intersection,
then B is smooth (see [Tj1]). If X is Cohen-Macaulay of codimension
2 (i.e. embdim(X) - dim(X) = 2), then B is also smooth (see [Schal.

In general however B may be singular and even have components of



different dimensions. The simplest example is the cone over the
rational normal curve of degree 4 in [P4, due to Pinkham (see [Pi]).
In this case B consists of two smooth components, one of dimension
three and one of dimension one, infe'rsecting each other transversally.

In general it is very hard to compute the base space B for a given
singalarity X. Only recently the base spaces of all cyclic quotient
singularities were determined by Arndt (see [Arn]). Usually the first
step in the construction of B consists of finding Tﬁ , the set of first
order deformations of X, which can be naturally identified with the
Zariski tangent space of B. This space Ti has received much attention,
in particular in the case that X is a normal surface singularity. Using
a resolution of X one can try to compute T)j( in terms of of resolution
data (see [La], [Wal]). This has been rather succesful for rational
singularities (see [Ri], [B-K]).

For a hypersurface singularity T;( can be identified with OX/ J{fy,
where J(f) is the the ideal generated by the partial derivatives of f,
and f = 0 is a defining equation of X. One easily sees that T)j( is finite
dimensional if and only if X has an isolated singular point. When X
does not have an isolated singular point, it is natural to look for a
special class of deformations, namely the class of deformations for
which the singular locus of X is deformed flatly (and stays inside the
singt‘:lar locus of the deformed X!). Under appropriate circumstances
one can hope for a finite dimensional base space, because the infinite
din;ensionality of T}l( is caused by the 'opening up ' of the singularities
transverse to the singular locus. A good example to keep in mind is

the A, -series of deformations of the A_ -singularity:
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In his thesis, Pellikaan [Pel] (see also [Pe2]) started with a
theory along these lines, extending the case that the singular locus
is smooth and one dimensional, which was considered by Siersma
( see [Sil). Petlikaan's main resuits however concern the case that the
singular locus I is a compiete intersection or the case that Z is not
deformed at all. If T is a complete intersection, then the base space
of the functor considered by Pellikaan is smooth (see also §3.C). That
this is not always the case, can be seen by the following beautiful
example of Pellikaan (see [Pe 2], ex.2.4). This is the example of
f = (y2)2 + (zx)2 + (xy)® . Here the (reduced) singular locus I is
described by the ideal I = (A, A,,44) = (yz, 2X, xy), so % consists of
the coordinate axes in € . He gives two types of deformations. First
of all, one can deform the curve Z, giving a deformed ideal I= (3'1 ,3'2,3'3).
Then obviously F = (31)2 + {32)2 + (_3:.,;)2 gives a deformation in the
above sense. Because one knows that dim T% = 3, and in this case X
is Cohen-Macaulay of codimension 2, one gets a deformation over a
smooth 3 dimensional space. Another deformation, over a smooth curve
with parameter s, is given by F = f + s.xyz. Here I is not deformed
at all, and the deformation is also admissible in the above sense,
because xyz = O has also the coordinate axes as singular locus. These
two types of deformations are 'essentially’ all admissible deformations
of f. So we get a family over a space B which is the same as the base
space in Pinkham's example we mentioned above. This is not a coinci-
dence. Because our space X, defined by f = 0, has singularities in co-
dimension one, it is not normal. Now the normalization X of X is
precisely the cone over the rational normai curve in P*. Moreover, the
total space of the deformation over the one dimensional component
of X can be identified with the cone over the Veronese surface in P>
(see [Pi]). It is known that a 'generic' projection in P2 of the Veronese
surface is the Steiner Roman surface, described in homogeneous coor-
dinates by the equation (yz)2 + (zx)2 + (xy)2 + sxyz = 0 (see [S-R],
pp.128-135). This indeed correshonds exactly to the second type of

deformation of X described above.



In general, we consider a normal surface singularity ﬁ, embedded
in some high dimensional space. When we now project X down to €3,
we get a hypersurface X as image. This hypersurface X will in general
have a curve I as singular locus. For a 'generic' projection X will be
weakly normal or what is the same, X will have transverse A, -
singularities meaning that in a general point q ¢ = one has (X,q) & A
(i.e. T will be an ordinary double curve). Conversely, given a weakly
normal surface X ¢ €2, one can take the normalization to get an X.
Now the statement is that the functor of admissible deformations of
X is equivalent to the deformation functor of the diagram X —X.
{see §4.) As the deformation theory of X is not ‘essentially’ different
from the deformation theory of the diagram X ~—X, this implies that
all pathologies occarring in the deformation theory of normal surfaces
are reflected in the deformation theory of non-isolated hypersurface

singularities in c

The purpose of this paper is to develop the (formal) theory of
admissible deformations of non-isolated singularities, as intended
above. We give a short overview of what to expect. In § 0. we treat
some algebraic results. This paragraph should be used as a reference,
and can therefore be skipped on first reading. In § 1. we introduce the
functor of admissible deformations Def(Z,X) of a singularity X with
a subspace ¥ of the singular locus of X as a sub-functor of the
deformations of the diagram & ——X, and investigate the Schlessinger
conditions. In § 2. we consider the problem whether the natural
forgetful transformation Def(Z,X) —Def(X) is injective. In § 3. we
develop the infinitesimal deformation theory for non-isolated
hypersurfaces. We determine the tangent space THE,X) of Def(£,X)
and identify the obstruction space T2(Z,X). In § 4. we prove the above
mentioned equivalence between Def(Z,X) and Def(X —»X). In § 5.
finally we give examples and appplications. For a weakly normal

surface X in €® with normalization X we give a formula for TX? in



terms of X only. Furthermore we prove a theorem about the dimension
of the smoothing components of a normal surface singularity X in
terms of the number of triple points (xyz = 0) occurring in the
deformation of X. Finally, in § 6. we determine, up to a smooth factor,
the base spaces of the semi-universal deformation of all rational
quadruple points. This proof reflects our experience that to understand
the deformation theory of normal surface singularities it is essential
to study the double locus I of a projection in €2 (c.f. (3.28)).

It should be stressed that although we try to formulate our results
as general as possible, the case that interests us most and which we
always have in mind is the case where X is an an analytic germ of a
weakly normal surface in €2 and T is the singalar locus of X, with
its redmced structure. So along our way we are always willing to make
any assumption on X and % as long as it applies to this case. For some
results simplér arguments can be given in the special case we have
in mind, which we usually for reasons of organization and clearity have
avoided.

Conventions.

By a space we always mean an analytic space germ or the spectrum
of a local ring. Typical names for spaces are X, Y, T, Z, etc, for rings
R, P, S, etc. When we say that 'Xg is a space over S' we mean that
Xg is a space with a map to Spec{S) or to §, depending on whether
S is a ring (this is usually the case) or a space . In such a relative
situation we do simply write Xg/S in cases where one usually should
write Xg/Spec(S). Although we are not completely systematic in this

respect, we do not expect any confusion to arise.
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§o. Algebraic Preliminaties

7 In this preliminary paragraph we formulate some resuits from
local commutative algebra which will be of use in § 2 and § 4 of this
paper. Lacking a comprehensive reference and for convenience of the
reader we include proofs. The results are centered around the
interaction between the notion of flatness, base change properties of
Ext, Cohen - Macaulay properties and duality. This paragraph may be
skipped on a first reading.

In the sequel we adopt the following conventions:

* S is a noetherian local ring with maximal ideal mg and residue
field k = §/mg .
* R is a noetherian local S - algebra

* We also consider R - modules M, N, . . . , and we always assume

them to be finitely generated.

* When we put a bar over a module M we always mean
M=R®RM'—°k®SM,whereR=k®sR.
* For some results we assume that R is a quotient of flat S - algebra

P such that P is a regular local ring.

Proposition (0.1) :

Let M and N be two S-flat R - modules. Consider the natural

mappings
. i i 3
®; ExtR(M,N)tSJk —_— ExtE(M.N)

Then: i} If ¢; is surjective, then it is an isomorphism.

i) If Py and p;_, are surjective, then Ext;[M.N) is S—flat.



proof: This is a slight variation on the 'Cohomology and base change
theorem' (see [Hal, pp 282-290). Let F, — M be an R - free
resolution of M. Then the complex N* = Hom,(F, ,N) consists of
finitely generated R - modules which are § - flat and has

Extl; (M,N) as cohomology groups. We have N°® = Hom,, (F, ,N )
HomE(F_ ,N) and as M is S - flat, M is resolved by the complex F,

Hence, the cohomology of the complex N' computes Ext%(l\"f-l,l\? ).

Consider now the functor ’I'i on S - modules:
T, A — ThA = HN 8 A).
By the usual arguments one has:

+ T! left exact e wl .= Ccnker(Ni—1 ——rNi) is S - flat.

% T right exact € o, THSH® A — TiA) | for all A

& o, is an isomorphism for all A.

But also: T right exact &1 left exact ew'l s - flaa ©
(local criterion for flatness, [Mal, pp. 145-149) wit! @ m, Cywit!
&1 (m) <o 1™ (5) ©TI$)8k — T (k). From this the

proposition follows. 5

Corollary (0.2) ¢

Under the same assumptions as in proposition (0.1) one has :
D If BExtA(M,N)=0 them  Extl(MN) =o.

) If BxtX(MN)=0fork=11andk=i1, then

ExtIi(M.N) is S-flat and Exté-{ﬁ,ﬁ) = Extl (M,N)®_k.

proof: Statement i follows easily from (0.1) together with the lemma
of Nakayama, as we know that the modules Ethi:. (M,N) are finitely
generated modules over R. For statement ii) note as ¢,y is surjective,
the functor Tm is right exact and as TH](S) = 0 by i), we find that

Ti+1(ms) = 0 and hence y; is surjective, so by (0.1)i) we are done. X



Lemma (0.3) :

Let M be any finitely generated R - module and N be an S - flat

R - module.

Then : ExtRi— {(M,N)=0fori=0,1,...,p implies

Ofori=0,1,...,p.

[}

Ext! (M,N)

proof By [Mal, thm 28, p. 100 we have that Ext%(ﬁ,ﬁk 0 for
i=0,1,...,p is equivalent to the existence of elements _’Ei e R,

i=0,1,..., p sach that
) % Annﬁ(]\_d)
ii) the X; form a regular N - sequence.

Now let m, , my-, . .., my be R - generators for M and x ¢ R any
lift of one of the %;. Then x. M C mg .M, so dettxI - B).M = 0,
(where B is any matrix of x. with respect to the generators m; of M)
by Cramers rule. As the entries of the matrix B are in the maximal
ideal, we see that the elements y; : = det{x; .I - B) ¢ Anng(M) project
to iit. As these form a regular N - sequence and N is S~ flat, we
have that the y; form a regular N - sequence (see [Mal, pp. 150-151).

Hence the lemma follows by application of [Ma], thm. 28 again. ®

Definition (0.4) 1
let R and S as above and let M be an R - module. We say that:

* M is Cohen - Macaunlay over § (CM over §) if and only if
i) M is a Cohen - Macaulay R - module (.e. dimﬁ(l\q/_l)= depthﬁ(ﬁ)).
iit Mis S - flat.
We call d: = dimi(ﬁ) the dimension and ¢ : = dim(R) - d the
codimension of M over S. If ¢ = 0 we say that M is maximal Cohen-

Macaulay over S (M is MCM over S).



* R is regular over § if and only if
i) R is a regular local ring.
if) R is § - flat.

We call N : = dim(R) the relative dimension of R over S.

For a local ring that is regular over S we will use the symbol P.

We call (x)P PR P the dualizing module of P over S.

Proposition (0.5) :

Let P be regular over S of relative dimension N. For an § - flat

P - module M the following conditions are equivalent:

i) M is CM over S of cedimension c.

i) Extl(M,wz) =0 forisoc

proof : First assume 1). The relation between depth and local
cochomology ( see [Grol, cor. 3.10, p.47 ) tells us that Hlm (M)=0 for
i { N - ¢. Then the local duality theorem for the regular local ring
P ( see [Gro], thm 6.3, p.85) states that HL (M) is (Matlis-)dual to
Extll;a"(h—d.wf, ). Hence we have Extf,k (1\71,(0}-, )= 0 for k>c. The
vanishing of the lower Ext's follows by Ischebek's lemma ({Ma],
(15.E), p.104), because the dimension of M is N-c and the depth of
() 5 is N. Hence we get ii). To get i) from ii) one just reverses the

above steps. b

Definition (0.6} :

Let P be regular over S and let M be a P -module which is CM over
S of codimension ¢. The dual module of M is defined to be

v oo C
M [ EHP(M'(OP/S) .

An S - algebra R is called embeddable if R is the quotient of a ring
P which is regular over S. If R is Cohen - Macaulay over S of
codimension ¢ considered as a P - module, we define the dualizing

- DY = C
module to be Wpigt= RY = Extg (R, P/S ).



By the change-of-rings spectral sequence (see [C-E], p. 349)

Proposition (0.7) :

Let P be regular over S and let M be CM over S of codimension c.
Then one has:

i) Extpg (M,Wp,g) =0 fork + ¢ .

i) the dual module MY is § - flat .

i) (M¥) = (M)™ .

proof : Combine (0.5) with (0.2). In fact, for an § - flat module M,

the Cohen - Macaulay property is equivalent to the above three
properties. =

Remazk (0.8) :

EP = BxtR(M,Extg (R,N) & Extf I (M,N)

one can relate Ext's over different rings. If R is embeddable and CM

over S of codimension ¢ as a P - module then one has an isomorphism
Ext.P (M, (05 ,¢) = ExtF (M, (0p )

for any R - module M. This also shows that () ;o is essentially

independent of the choice of P in (0.6).

Corollary (0.9) ¢

Let R be embeddable and CM over S of codimension ¢.

Then one has:

i) Propositions {0.5) and (0.7) hoid for P replaced by R.

ii} If M is CM over S of codimension e considered as an R - module,

then M is CM over S of codimension e+¢c considered as a P - module.
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Proposition (0.10) 1

Let R be embeddable and CM over S and let M be an R - module

which is CM over S of codimension c¢. Then one has:

iy MY = Extl‘i (M,Wy, ) is also CM over S of codimension c.

Y.

ii)} There is a natural isomorphism M —— (M

prook 1 It is not hard to see that by using (0.9) one can reduce to the
case that R = P , P regular over S. Consider a minimal free resolution
F. —M of M over P. Because M is § - flat, the complex 1? is a
minimal free resolution for M . Because M is Cohen - Macaulay of
codimension ¢ over the regular local ring P, we conclude by the
Auslander -Buchsbaum formula (see [A-B], thm 2.3, p.397) that the

length of the complex F_is exactly c, i.e. the resolution looks like

O_PPC—'PFC_I | SN ?F] #FO > M »0.

When we apply Homp(—, P} we get the complex

0 —Fy’ :Fl" y. .. :Fc_j" —»ch » MY »0

where F¥ = Homy (F ,P). By (0.7) this last complex is exact, hence
we get a free resolution of MY. As we already know that M~ is § -

flat by (0.7) one can reverse the steps and the result follows. &

_.11._



§1. “The “Functor of Admissible Deformations.

Consider a (germ of a) space X and a subspace I contained in
the singular locus of X. In this paragraph we define a certain sub-
functor of the functor of deformations of the inclusion map of Z in
X, which consists of deformations for which the deformed X stays
inside the singular locus of the deformed X. First we have to define

an appropriate structure on the critical locas of a map {(and hence

on the singular locus of a space). Let X ——S be a flat mapping of

relative dimension n.

Definition (1.1) :

The critical locus €:= Cx /g is the locus defined by an}l{/s)' the
n-th Fitting ideal of the sheaf of relative Kihler one-forms. The
critical space is € together with OC 1= OX/Fniﬁi( /S ) as structure
sheaf.

This definition can be found in [Te], def.2.5, p.587. It is natural to

consider the critical space again as a space over S. One of the reasons

to define the critical space in this way is because of the following

Property (1.2) :

The formation of the critical space commutes with base-change.

This comes down to a simple property of Fitting ideals {see [Tel, p.570)

Depinition (1.3) :

* A diagram over S is a triple { Zg , Xg , i ), where Zg and Xg are
spaces over § and i : Zg —Xg is a map over S. Usually we will be
sloppy and say that Zg — Xg is a diagram over S, without even

mentioning the map.

* A morphism of diagrams is defined in the obvious way.

_12_



* A diagram &g — Xg over S is said to be admissible, if the map

i: g — Xg factorizes over the inclusion map Cxg/s s Xs.

* A morphism between admissible diagrams over § is just a morphism

of the underlying diagrams over S.

* Let T —X be a diagram over Spec(k), k a field. Let S be the
spectrum of a local ring with residue field k. A diagram Zg —Xg

over S is said to be a deformation of the diagram %~ ——X iff :
i}y Zg and Xg are flat over S.

(2 — X)» (55 —— Xg) x Spectlo

* A deformation Zg —Xg of T — X is called admissible or is said

to be an admissible deformation if the diagram g —Xg is admissible.

Let € denote the category of local noetherian k - algebras with
residue field k. It has a full subcategory €_ consisting of Artinian
algebras. Let Set denote the category of sets.

Definition (1.4) 1

Let & — X be an admissible diagram over Spec(k).
The functor C — Set

S {isomorphism classes of

deformations of % -— X over S}

is called the functor of deformations of the diagram £ — X and is
denoted by Def(Z — X).
The functor C — Set

S a——-———-+{ isomorphism classes of admissible

deformations of ¥ ——X over § }

is called the functor of admissible deformations and is denoted by
Def(Z,X).

- 13 -



We remark that the base-change property (1.2) is needed to make
Def(£,X) into a functor. Remark farther that Def(Z,X) is a subfunctor
of Def(Y, —» X)}. We do not make a notational distinction between

these functors and their restriction to the subcategory C_,.

We recall that if T' and T ¢ Obi€,} then a: T'— T is called a
simple surjection if « is a surjection and Ker{x) is a principal ideal
in T" with Ker(o).mp = O , where mp is the maximal ideal of T'.
{see [Schl 1], 1.2).

fiemma (1.5);

The functor F := Def{Z —X) is semi-homogeneous, i.e. three of the

four Schfessinger conditions are satisfied:

) PFlk) = {pt}

i) F(T"xpT") —F(T") xgm) F{T') is surjective for every simple
surjection T' — T and every morphism T" —3T.

i) P{T'xy k[e]/e?) — E(T")x F{k{e]/c?) is an isomorphism for all
T'

The proof is similar to [Schli], 3.7 . In fact, for ii), if we are given
deformations ZS _— XS , Zs- — XS' and Esn E— XS"

(S = Spec(T} etc. ) with

(st — XS-) Xgr S~ (ZS" ——FXS")XSHS %(ES ——')XS)

then the natural map
(( Zgn st ZS') —_— (XS" HXS XS')) (+)

gives a deformation of the diagram over S'xg §' which restricts to

the given deformations over $' and S".

Proposition (1.6) 1

Def(Z,X) is a semi~homogeneous subfunctor of Def(3X — X).

_14'_



proof: Our definitions are casted in such a way that the proof just
becomes a repetition of the proof that the functor of deformations
with a singular section has an analogous property. That case
corresponds to X = {pt} and has been treated by Buchweitz
(see [Bu], p.79). We keep the notation as above, but now we are given
Zg —*Xg , etc. , which are admissible. We have to show that the
diagram (*)under (1.3) in fact is admissible. It is clear that the map

(*) factorizes over

Cxgesst ey /sC Xg/s”

Bat by the base change property of the critical locus (1.2) there is a

natural morphism
[} C ' " [}

which gives us the factorization which shows the admissibility of {%).
It is now clear that the result follows because Def(Z — X) itself

is a semi-homogeneous functor. ®

Corollary (1.7) :

If Tj(Z,X) : = Def(S, X) (k[e1/(?)) is a finite dimensional vector space,
then Def(Z,X) satisfies the Schlessinger conditions; i.e. Def(Z,X) has

a huall {i.e. a there is a 'formal’ semi-universal deformation).

proof : See [Schil], 211 . =

Suppose that we have an admissible diagram X C—y» X and an
embedding of X in some smooth ambient space Y. Analogous to the
functor Def(%,X) of admissible deformations one can define a functor
Embdef(Z,X) of admissible deformations which can be realized inside
Y. It is of some importance to describe the relation between Def(Z,X)
and Embdef(Z,X), because in practice one always describes X and X
by equations, so an embedding is always implicit. We now shail make

this relation more precice.

- 15 -



Definition (1.8) :

Let Y be a space smooth over k. An embedded admissible diagram
{over Spec(k)) is a diagram £ &— X Y (over Spec{k)} such that
L < X is admissible. An embedded admissible deformation over S
is a diagram Zg “—Xg “——Yg 2 YxS over S such that Zg 3 Xg
is an admissible deformation of ¥ X. Morphisms between such

objects are defined in the obvious way. The functor

C — Set
S r——-—’{ isomorphism classes of embedded admissible
deformations of T X &~ Y over S }

is called the functor of embedded admissible deformations and is

denoted by Embdef(Z,X}, the space Y being anderstood.

Lemma (1.9) 1

The natural forgetful transformation

Embdef{Z,X) -—— Def(Z,X)

is smooth.
This statement is completely analogous to the corresponding statement

about ordinary deformations. We omit the proof and refer to [Ar1]
for further details.

_16_



§ 2. Onjectioity.

In § 1. we introduced the functor Def(Z,X) of admissible
deformations, consisting of deformations of X together with a
subspace T of the critical space € of X. There is a natural forgetful

transformation
Def(Z,X) — Def(X) .

In this section we formulate some conditions under which this is an
injection, i.e. conditions under which Def(Z,X){S) ——— Def(X)(S)
is injective for all § in the category €. Intuitively, this shouid be the
case when X can not ‘'move’ inside €. One expects this to be the case
when ¥ and € are equal at the generic points. The problem is to find
a good functorial way to reconstruct X from X alone. The conditions
we find are probably unnecessarily strong, but they suffice for the
applications we have in mind. We use some generalities from local

algebra which can be found in § 0.

Lemma (2.1):
Let R and S be rings as in § 0. Consider an exact sequence of R -

modules:

Assume that:

i) M is Cohen-Macaulay of codimension c.
i M is § - flat.
i) Extl(N, wg)=0fri=0,1,..., ¢

)

o i T o
Then M & (A7) : = Extlg {ExtR(A, mR/S)' wR/S .

...1?_



proof : By (0.4) M is CM over § of codimension c. By (0.3} we
have that Extli {(N,Wg,g)=0fori=0,1...,c When we take
Homg( - , 0 ;o ) of the above exact sequence we get MY & AY,

Hence the lemma follows from (0.10).

The above lemma expresses the fact that if the 'difference’ N between
A and M is 'small’, then a possible flat deformation of Mto Mis
completely determined by A, even if A is not flat. For this to be true,
one of course needs some purity of M, like the CM - assumption. We

use this fact to prove the following theorem:

Proposition (2.2)

Let 3 ©“——X an admissible diagram over Spec(k) and let I be the
ideal of £ in Oy . Assame that:

1} X is Cohen-Macaulay of dimension n.
ii} £ is Cohen-Macaulay of codimension c¢ in X.
iii) Extd (1/F (Q), Wy) =0 fori=0,1,...,c.

Then the natural forgetful transformation
Def(Z, X) ——— Def (X}
is injective.
prock : Let g ©——Xg be an admissible deformation of T ——X

over S. Because Tg ———Cg , where Cg is the critical space of Xg

over S, we get an exact sequence of OXS - modules:

0 » N ¢Ocs——-,ozs——»0

where N = I/ B, (@ ) (g the ideal of Ig in Oxg ).

- 18 -~



Our assumptions are of Quch a nature that we can apply lemma (2.1}
to get OZS % ( OCSV)V. Hence the arrow OXS -—DUZS is natarally
identified with the composition OXS — Q¢ S —(O¢ S")". As the
critical space Cg is determined in a canonical way by Xg —S§ ,
we see that we can reconstruct Zg —— Xg from the map
Xg —S alone; i.e. Def( %, X) —Def (X)) is injective. &

Corollary (2.3) :

Let ¥ ©——X be an admissible deformation over Spec(k}. Assume that
% and X are Cohen-Macaulay. If dim(Supp(I/F n(Q)%))) { dim{Z}, then
- the transformation Def(Z,X) —Def(X) is injective.

proof : This follows immediately from {2.2), because by local duality
iii) is equivalent to H{;} (I7E ¢ Qi)) = 0 for izdim(Z). As local
cohomology of a module vanishes above the dimension of its support,

we get the result. |

In the case that X is a {germ of a) reduced hypersurface singularity,

given by an equation of the form f=0, £ ¢ €{xy,X, , . . . , X}, then
I/E (Q)) = I/ (£,J(f)

where J(f): = (9,f, o,f, . . ., o,f) is the Jacobian ideal, generated by
the partial derivatives o,f = 3f/9% . A further specialisation of (2.3)

is the following.

Corollary (2.4) :

Let X be a hypersurface germ defined by f ¢ C{x,. %, . . ., X} and
let T be defined by an ideal 1 > (f,J(f)). Assume that:

) ¥ is Cohen-Macaulay of dimension 2 1
i) dimg(I/(£,JifN = .

Then the forgetful transformation Def(Z, X} ——Def(X) is injective.

_19_



Remazk (2.5) :

When the ideal I is redaced and the conditions of (2.4) apply, we say
that X has {generically) transverse A, - singularities. In the above
context of hypersurface singularities, Pellikaan [Pe] studied modules

of the form 1/]J(f). His results imply the following:

“Theorem (Pellikaan, [Pe 4], thm.(3.3), (3.4), (3.5))
let f ¢ C{xo,xx,. ,xn} define a germ of a mapping f:C™* —— C.
Let ¥ be defined by an ideal I D J{f) such that dimg(I/J{f)) « .

Assume that one of the following conditions hoid:

i % is Cohen-Macaulay and dim(Z) = 1.
ilt X is a complete intersection.

iti! T is Cohen-Macaulay of codimension 2.

Then for an admissable deformation of the mapping f and X (defined
analoguous to (1.3)) I/J(f} is flat.

Note however that the module 1/(f,J{(f)} can not expected to behave

in a flat way. {c.f. u and © for an isolated hypersurface singuiarity.)

We conclude this section with an example that will also play a role in

§ 4. and which shows that Def{Z,X) — Def(X) is not always injective.
Example (2.6) :

Let X be defined by f = x3 + y2 ¢ kix,y] {char(k) * 2,3), so Jf = (x%,y).
Let £ be the subspace of the critical locus defined by I = (xy}.
Consider the trivial deformation of X over kiel/(&? ), defined by the
same function f, but now considered in kis,x,y1/(e%). Let Ij = (x)y) C
kle,x,y1/(e? and Iy = (x+e,y)C kiex,yl/(c%). Because x* = (x+).(x-¢)
we see that both I and I correspond to admissible deformations of
the pair £,X. One can check that these elements are different in
Def(Z, X)(k[e1/(c2)), but map to the trivial deformation of X in
Def(X)(k[£1/(e?)). Hence Def(T,X) ——»Def(X) is not injective in this

exampie.
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§ 3. Onfinttestmal Admissible Defotmations of Hupersusfaces

This paragraph is devoted to the study of the functor Def(Z,X)
in the case that X is a germ of a hypersurface singularity. This study
is divided into three parts. In part A we study the vector space
THE,X) : = Def(E, X ) k{e]/(e?) of first order admissible deformations.
Part B is devoted to the obstruction theory, i.e. conditions for
extending a given deformation over a somewhat bigger base space.
Under appropriate circumstances the obstruction space we get is a
quotient of (the torsion subsheaf of) sz , the Kihler differentials on
5. We also prove a theorem that states roughly that the base space
of the semi universal deformation space of Def(Z,X) depends mainly
on %. In part C we prove that if £ is not obstructed, then the
obstruction space is in fact an in general much smaller subspace of
the quotient of Tors(Q%) we got in B. A crucial role is played by the
so called Hessian form. For competational purposes this does not seem
to be to important, but for theorétical purposes it probably is. Farther

we give some formulas relating this Hessian to other invariants.

Notations and Conventions (3.1):

Throughout this paragraph X will denote a germ of a hypersurface
in {€™?' ,0), defined by an equation f = 0 , f ¢Q : = Qgn+ g =
Clxp Xy . - y Xt In fact, as all our arguments will be algebraic in
nature, we might as well replace O by any local ring which is smooth
over a field k.

T will be a subspace of X, defined by an ideal I c Q.

Furthermore, we put

f1:={gec0O](g.08)c1} (1)
where d,g := 0g/d%, is the partial derivative of g with respect to x,.
{1 is an ideal and is called the primitive ideal of I (see [Pe3], def.1.1)
This notion of primitive ideal leads to a convenient formulation of the

condition that L is contained in the critical locus of X. Clearly:
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ZCCX & fe_fl

An alternative way to define [I is by the exact sequence

0 —v /01 2 0'e0y —— 0} ——0 2)

where 0! : = qujn-i-llo

We choose generators 4;,i=12,...,m for the ideal I:
I=( A, 8, ..., 4,) (3)
Because f ¢ I (£ C X ) we can write:
m
£ = D ooy A (4)
i=1
Because f ¢ [I, there are elements w;e ol ,i=12,...,m such that
m
df = > w . A (5)
i=1

In order to keep the notation as simple as possible we suppress all
indices, i.e. we simply write I = (A), f = x.A and df = ©.A instead of
(3), (4) and (5). We will extend this 'summation convention' without
any further comment to new situations. To make this more precise,

we choose a presentation of Oz as an O - module

0 y R » F » O » Oy —— 0 (6)

where F: = O™ and F ——Q is the map ¢ —— 4 . R is the
module of refations between the generators A; ,ie.re RS r. A= 0.
Then o can be considered as an element of <F and is determined by f
modulo R and w can be considered as an e-lement of ‘35 ® O and is
determined modulo R ® Q! .

Sowehave: f¢ [I1ES 3o, w]| f=oa.Aand df = w.A . We will

use frequently the following equivalent form of this statement.

Lemma (3.2):f¢ 1 € 1o, T|f=o.Aand a.dA + T.4=0,
peook : From £ = o A we get df=do.A + x.dA. As df=w.A we get
O0=0.dA+T.A,where' = du- w 5
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A Fiest Order Deformations amd T'(Z,X).

Let Embdef(Z, X) be the functor of admissible embedded deformations

of T in X. There are two obvious forgetful transformations

Py : Embdef(Z,X) ——> Embdef(X)
Py : Embdef(Z,X) ——— Embdef(Z)

We put A : = Embdef (Z,X)(S)
Ny : = Embdef(X)(S)
Ng : = Embdef(2)(S)

where S = €[c]/(e?). Via the natural mappings Py : A —— Ny and
Ps : A —INy we can consider A as a subset of Ny x Ny . We call
,4 the set of admissible pairs. The set Py( ;4} we call the set of admis-
sible normal vectors to T and Py(A) the set of admissible functions.

All these sets have a natural C-vector space structure.

Let us first briefly recall the description of the vector spaces
Ny : = Embdef(£)(C[s1/(e2)) and T¢ : = Def(£)(€[el/(e2) of first order -
(embedded) deformations (see also [Ar 1]). Let T ¢ €®*! be defined
by an ideal I = {A) ¢ O and consider a flat deformation Z_ of X over
Spec(€[c]/(%)). Then % is defined by an ideai I; = (A;) = {A+ec.m
c ©O[e]/(e? ). Now flatness in terms of relations means that for all
relations r ¢ & for (A) there is arelationr, = r + €.s for (AE), i.e.
r. . A, =0 Expanding the product and using £2 =0 we see that an
embedded first order deformation is given by an n such that for all
re R one has r. n + s.A = 0 for some s. So n can be considered as
a homomorphism I — Oy ; A; —n; .(In the sequel we usually
will not make a distinction between a normal vector n and its set of

components (n,)). From this it follows that
Ny = Hom(I, Ox) = Homy (1/12, Oy) (7)

The OZ‘. - module on the right hand side is called the normal sheaf
(of T in the ambient space), being the dual of the conormal sheaf /1%,
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The space of first order deformations is obtained from the space of
first order embedded deformations by dividing out by the infinitesimal
automorphisms. These are generated by the vector fields & on the
ambient space: a 3 ¢ & gives rise to the homomorphism (Ai e G Ai))

¢ Ny . Thus one sees that Té sits in an exact sequence

-
(=)

0 » 6y — 080y — Ny — T3 (8)

which starts with the dual of the sequence (2}.
The description of NX and T}l{ for the hypersurface X is of course very
easy: Ny ~ Oy = O/(f) and T~ O/(£,9,f) = O¢y.

Now we can describe the set A of admissible pairs as follows:
;4 = {(n,g}e NEXleHOHG? ) 0 ¢ ? ® 0! such that

1) (f+e.g)=(a+c.0q).(A+€.m)
2) d(f +e.g) = (0 +c.0).(A+em) |

These conditions can be rewritten as

Elcx,e?,wze“}@QII 1) g=om+og.A

2Ydg=w.n +w.A (9

These expressions motivate the following definitions.

Definition (3.3) 1
The o and the w - map are given by:
ap: Ny — Oy : N0 — o.m
wg: Ny —— QI®CZ; n — .1
Furthermore we define the w ~ map by

wf:Nz —_—) Qzl i n — dle¢.n) - wm =

e¢.dn +T.n

We usually omit the index f if no confusion is likely.
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feemma (3.4) ¢

The &, ® and w - map only depend on f ¢ /I and not on the particular

choices of the o and W .

proof : The x-map can be defined intrinsically as the evalution of the
normal vector n, considered as a homomorphism, on f. Similarly, the

w-map is intrinsically n —— (n®1d)(df), and the result follows. ®

Note that the o and the w - map are homomorphisms of OE -
modules, but in general w is only C-linear.

femma (3.5) :

i) There are exact sequences

0 — Pz(ﬂ) E— NZ __VV__’ Qg

0 — fI/(f) — A ——IPs(A)— 0

i} There is a natural map ¢ : Ps(A) —— Qs [1 which associates to
an admissible normal vector n ¢ Py( ,4) a mnique [I - coset such that '
(n,g) e ASgeon) +[1.
proof + One has: n ¢ Ps(A) € 3g such that (n,g)e A & I oy, &
such thati) g = «.n + o, .A and ii) dg=w.n + &, .A . When we substitute
the first in the second equation, we get d(a.n)-w.n= -d{cyy .A)+ @,.A
Hence indeed n ¢ Py( A) © win) = 0, which proves the first statement.
Further one has: (0,g) ¢ A < 3 &, », such that i) g = o, .4 and ii)
dg = w, .A , ie. g« J17{f). For the last statement, remark that by
the exact sequence (2) one has that the equation win)=-dla, .A)+w,.A
determines the element oy .A modulo [1. One then checks that the

element ¢(n) = a.n + o, .A is well- defined modulo [I. ®

To get from the space ,4 of embedded admissible pairs to the
space TI(Z,X) of admissible first order deformations, we have to
divide out by the infinitesimal automorphisms, which are generated

by the vector fields 3 ¢ © on the ambient space:
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THE,X) = A 7{(8(A), ()] 8 ¢ ©} (10)

In (3.5) A appears as an extemsion of Py(A) by [I/(f) and this
suggests that we first divide out the automorphisms that act on
Py(A) and then let act ©(logZX) : = {80 | 9{¥) c 1} on [I/(f).

First we have to check that indeed our maps o, w and w descend from

the space Ny to sz .
fiemma (3.6) :
The « and the » — map (and hence the w - map) descend to maps
[+ 3 TZ]‘. —p OZ
® sz-‘ —_— QZ]:
{which we continue to denote by the same symbols).
peoof : By lemma (3.2) we have «.dA + I'.A = 0 for some I'. Contracting
this equation with § ¢ @ then gives «.9(A) ¢ I. This means that the

o - map descends. Let .(3 denote the Lie-derivative with respect to 3.
From df = w.A we then get

d(8(f)) = Lgidf) = Lg(w).A + w.3(A) (11)

and as 9(f) ¢ | we indeed see w.3(A) = 0 in in-. ; =

Definition /Corollary (3.7) :
Define TH(X) : = Im(T'Z,X) — T¢). Then:
i) There are exact sequences

w

0 —— T3 (X) » T4 » O
0 —— [I/(£,J5() —— THE,X) — 3 TFHX) — 0
Here Js(f):={8(f)| #D c1}.

i) There is a natural map ¢ : Te(X) ——— Q/(f1 + J(f)) which
associates to an [n] ¢ T):]:{X) a unique coset ©([n]) such that

[(tn,g)] ¢« THE,X) © g e on] + [+ JD.

pzoof : This follows immediately from (3.5) by dividing out the vector
fields. Note that from (1) it follows that $(I}) CI1 = $H{/Dc[I. =
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Remark (3.8) :

R. Pellikaan ([Pe3],pp.19-32) studied the slightly different problem
of admissible deformations of a map f . The space Js(f) he calls the
extended I - tangent space to f and the number CI,e(ﬂ = dimg (J1I/7)5(f))
he calls the extended I - codimension. It is clear that in our situation
the space [ I/(f,Js (f)) is the tangent space to the fanctor of admissible

deformations for which Z is ke;ﬁt fixed.

We know from § 2. that under reasonable assumptions that one has
that Def(X,X)} <— Def(X) and hence THZ,X) & Ty .

Proposition (3.9) :

Assume that THE,X) —— T)}. Then one has:

DT/ J5(E) —— [T/TINEIEN (& (ST + JEN/E,JEN )
i) @ TAX) C— QST+ J(£)

i) THE,X) & (p(TA (XD + [T+ JEN/EJEN € Ty.

prook 1 1) II/(f,JZ {f)) is a subspace of THZ,X). If this is to inject
in T;( , then the map in i) is injective. As it is clearly surjective, it
is an isomorphism. (c.f. [Pe 3], prop.5.3). The injectivity in ii) expresses
just the fact that if [(n,g)] e THZ,X), and THZ,X) STy , then
the deformation [n] of T is essentially determined by g. Statement

ili) then follows from i) and ii). X

The following proposition gives the dependence of the w - map on

our function f ¢ 1.
Proposition (3.10) s

i} There is a C- bilinear map

W: U x Tg —— 04
(f . mn)r— wgln)

where wf(n) = d{a.n}~w.n, f= oA and df = «.A.
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i) If f ¢ IZ (so £ =(h.A).A for some symmetric matrix h) then we have
Ps:(A) = Ny and the induced map ¢ : Ny —— Q/[I

is given by n—— 2.(h.A).n

;m:ooﬁ : The above map is clearly linear in f. We show that if f ¢ 12,
then w; is the zero map. But if £ = h.A.A for some matrix h, then we

can take o = h.A and © = d(h).A + 2.h.dA, so wg(n) = 0 in Q3.

Above we considered the space T)(2,X) for a general 5. In the situation

we are most interested in there is an important simplification.

Lemma (3.11) 2

Assume that T is reduced. Then the ¢ - map
o sz.. —— OZ

is the zero map.

proof : If T is reduced, then sz is a torsion Os - module. As Oy is

torsion free, oo has to be the zero map. R’

The ® - map being the zero map has the effect of making all maps

we encountered not only (€-} linear, but even modaie homomorphisms.

Proposition (3.12) 1

If the o - map is the zero map one has:
D (ngeA=>gel

i) w:Nyg — sz is Oy, - linear.
i) ¢ :Pe(A) —1/[1is Os - linear.
iv) A and TNZ,X) are Oy - modules.

v) Ps(A) and T}%(X) are Oy - modules.

We omit the easy and straight forward proof.
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Remark (3.13) ¢

In general there is an exact sequence of the form

o0 — NE,X =NZ & > OZ
where Ny y = Homy(I® Oy ,Os ) is the normal bundle of Z inside
¥X. So the equality of these two normal bundles is in fact equivalent

to the « - map being the zero map. In § 4. we will encounter another

interpretation of the condition that « is the zero map.

Corollary (3.14) :

If £ is reduced, then the map w: TZ’ —_— QE]: in fact lands in the

torsion sub-sheaf Tors(sz), ie. w: Tﬁ ———— Tors( Q)_l‘).

pwoﬁ : This is clear, because w is OZ - linear and T21 is torsion. ®

We summarize the above discussion in a theorem.

“Theorem (3.15) :

Let T be defined by an ideal I and let f ¢ [1. Assume that:
i} % is reduced and Cohen - Macaulay.

ii) dim{X) =2 1.

iti) dim(I/(£,J(f) o .

Then one has:

THE,X) & Py (AV/(£JE) c I/(£,]) ¢ Ty .
where Py (A) is the ideal (np(Té(X)) + 1+ J(f))
and Tg(X) = Ker(w : T4 ——Tors(Qy).

proof : Use (2.4), (3.9),(3.11),(3.12) and (3.14). &
We conclude this part with some simple examples.

Examples (3.16) +

1) f=xyz e C{x,y,2z} ,1=(y.2z, z.x, x.y). Because
I/ J(f) = O we have T’(Z,‘X) = 0. In this example one
has w : T¢ — Tors(Q4) and TE(X) = 0.
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2) f=xy®eC{xy}, I=(y
Then Py (A) = (xy,y%) = J{f), hence T1(Z,X) = 0.

3) f=x2y2 +y% |, I=(y).
Then Py (A) = (x%y,y?) and J() = (2x%y + 453, xy?)
Hence T!{(Z,X) is 2 - dimensional.

4) f = ()rz)2 + (zx)? + (xy)2 i 1= (yz,zx,xy).
Because f ¢ IZ , WiNyg — Qz]: is the zero map. Hence
Py( A) = Ny and is generated by the following vectors:
{y,0,0}, (2,0,0), {0,x,0), {0,2,0), (0,0,x}, (0,0,y).
A calculation shows that:
PyiA) = (¥2z, yz2, 2% %, 2%2, %2y, xy", xyz) and
{f,J{fN= (xy2+x22
Hence dim T'(Z,X) = 7, with as basis:
{3xyz,2(y22+y22),2(x22+x22),2(x2y+xy2),2x2yz,nyzz,zxyzz }.

,x2z+y22,x2y+zzy).

Conjectuze (3.17) :

Let X be a germ of a weakly normal sarface singularity in €2 with

singular locus X. Then:
THI,X)=0 & X =~ A_ f=y2+22 or

~ D_ : f=xy2+22 or
T

[

w,o,00 ¢ £ = XYZ

Remazk (3.18) :

We will see in § 4 the reason why one in general can not expect that
" for every £ & X there is an admissible deformation such that on
the general fibre the space XT] has ohly singularities asin (3.17). Such
a deformation we call a disentanglement (see (3.6). In fact, if & C P2
is a curve with ordinary nodes which is birational to a non-hyperelliptic
curve of sufficiently high degree, then X = Cone(&), I = Sing(X), oy
is an example of a pair ¥ —— X which has essentially only
‘equisingular ' admissible deformations (c.f. [(Mu]). In particular, it can

not have a disentanglement.
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B. Obstuuction Theory and Semi ~ Unioersal Deformation.

In this part we consider the problem of extending a given admissible
deformation over a space to a slightly bigger space. We will show that
in our situation the theory is completely analogous to the ordinary
deformation theory. We also outline the steps that lead to the
construction of the base space of the semi - universal admissible
deformation. As an application we prove a theorem stating that this

- base space only depends, up to a smooth factor, on the class of f ¢
1 modulo I 2.

Consider a 'small surjection’ of rings §' — S, i.e. suppose we

are given an exact sequence of the form:

0 » V » S’ » S » O (12)

where V is an ideal in §' with the property V.mg. = 0. In this situation

V becomes an S - module, in fact a module over k = §/ mg . We study

the map p : Def{Z,X)(§') ——Def(Z,X(S). The questions that arize

are:

* What is the image of p, i.e. which deformations over S can be
extended to deformations over S' ?

# What are the fibres of o, i.e. in how many different ways can one

extend a given deformation over S to one over S' ?

Given a deformation Zg C———-D Xg ¢ Def(Z, X){S), we split up the above

problem into three steps.

1. Try to lift g to Zg: over §' . This is an ordinary deformation
problem for X. |

2. Given a lift %g: of Zg , try to find Xg. as to make an admissible
deformation with Zg. .

3. Vary the choice of Zg+ in 2. to get from a given Zg C—)XS €
Def(Z, X)(S) to an element Zg. C——-—-—-DXSo ¢ Def(Z,X)(S".
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About step 1. we quote the following theorem.
“Theorem (3.19) :

Given a deformation Zg ¢ Def(X)(S) and a small surjection as in (12},
then there is an element

Ob(Zg) ¢ T @V
(where Tzz : = Hom(R/Rg, O5)/Hom (F,O5), where R, Fasin
(6) and Ry is the module of 'Koszul relations') with the following
properties:

i) zs extends to an ZS! @ Ob( zs} = 0.

ity If Ob{Zg) = O, then the possible choices for Zg+ form a principal

homogeneous space over Tzl ®V.

proof : Well - known, see [Schl2], pp.149-150. ®

(We use ® for tensor products over the ring and ® for tensor products

over the ground field k.)

Given an admissible deformation Zg ;-DXS ¢ Def(Z,X)(S) we thus
get a first obstruction Ob(Zg ) ¢ Ti-? ® V. If this obstruction vanishes
we choose an Zg: and go on with step 2. for which we have the

following.

Proposition (3.20) 1

Given an admissible deformation Eg = (ZS C-—-bXS ) e Def(Z,X)(S)
and a lift Zgt of Zg themr there exists an element

ObiEg,Zg) ¢ Qg @V
with the following properties:

) There is an Xg such that {Zg. C——b Xg ) ¢ Def(L,X)(S") &
Ob(Eg,Zg) = 0.

ii} If OblEg,Zg-) = 0, then the possibie choices for Xg: form a
principal homogeneous space over [I/(f,Js(f)) ® V.
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pzooﬁ : Let Pg = Ocn-»l < the local ring of the ambient space over
S and let Pg. be defined analogous. Then an element £ g is represented

by ag and I'g such that (see (3.2)) :
Ots . ﬁs = fs
(Xs.dAS+ rS'AS=0

Here Zg is defined by the ideal Ig = (Ag) and Xg by fg.
Note that there is an exact sequence of Kihler differentials:

1 1 1
QO —— V®QPS-/S' —_ QPSJS' —_’QPSIS —_— 0

and an isomorphism V® Qpls./S' Zave Qp. Qp= Q?Cnﬂ .

Now given is a lift Zg+ of Zg , i.e. we have Ag+ . Take any lift of

ag to oge and I'g to T'g: and consider the element
Ws- = OCS‘ dA5- + FS"AS' 3 QP13~/S'

Because over § wg: is the zero - form, we see that via the above

isomorphism we can consider wg+ as an element of V® QFI. .

Claim : The class of wg- in Qé ®V is independent of the choice of
ogr and g+ . In fact, the differences of two choices of og: and Tg.
are of the form v, ®fg+ and v, ®vg' ,V; ¢ V. Hence the difference of
the wg- is of the form v; ® Bgr.dAg: +v, ® YgrAg = Vy @B.dA + ‘;’2 RYA,
because V.mg: = 0. Consequentely, the class of wg in Q;: @V is only
dependent on Eg = (ZS"——)XS) and Zg . We put:

Ob(Eg,Ec) = [werle Qe @ V.
S:Zs S z

From the exact sequence (2)

0——-—»1/{1——‘1—-40138302———»02%————»0

we see that extension to S'is possible if and only [wS' 1= 0 and that
then the choice fg = g . Ag: is determined modulo {1 ® V. Dividing
out the isomorphisms for Zg. &— Xg. then leads to a principal
homogeneous space over [I/{f,Js(f)®V , as in {3.7).
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Finally, the result about step 3. is the following.

Theorem (3.21) :

Let Eg = ( £g @ Xg) ¢ Def(Z,X)(5) be an admissible deformation

over S. Then one has the following:

i) ‘There is a first obstruction Ob(Zg) ¢ T3 ® V.

ii) If Ob(Zg) = 0, then there is a second obstruction
OblEg) ¢ T2(Z,X)® V.

iii) Eg lifts to an element Eg+ = (ES' — XS')‘ Def(Z,X}{8") &
Ob(Zg) = 0 and ObfLg) = 0.

iv} The possible choices for E g in iii) form a principal homogeneous

space over T, X)e V.

Here TX(Z,X) : = Coker{w : Td —— Qg ) is the obstruction space
z Z

of our problem.

proof : This readily follows from (3.19) and {3.20). We only have to
study the behaviour of the ciass Oblgg,Zg+ ) when we vary the lift
Zg of Zg. Two different choices of Ag. differ by an element n ¢ Ny
®V , so Ob(Eg ,Zg+ ) descends to a class OblEg) ¢ T2(5,X)®@V as
defined above. {We omit some further details.) e

Remazk (3.22) :

If the o - map of (3.3} is the zero - map (c.f.(3.11)), then T2(Z,X)
is not only a vector space, but also an OE - module, In fact, in that

case W : T% ——bQé is OZ‘. - linear and T2(Z,X) = Cokertw).

When we assume that % is reduced then TZI: is a torsion OZ - module,
In that case it can be seen that the obstruction Ob(Zg ) in fact lands
in the Oy - module Tors(sz" )/w(Tziv‘ ). In the case that T has an

isolated singular point, this is a finite dimensional vector space.



We now apply Schlessingers method (see [Schli], pp.213-215) to
construct the hull of the functor Def(Z, X). For reasons of simplicity
we will assume that Z is a reduced space with an isolated singular
. point (see (3.22)) and that Tzz = 0. (For example, Z could be the germ

of a space curve in €3.)

Proceduze (3.23) :

* Take a basis t; ,t, , . .., t ¢ of the dual space of T‘(Z,X), and
a basis v} , Vg, . . ., V5 for the dual space of Tors(Qz]; ) /w(Tzl‘ ).

* Considerthe ring U : = C€[¢t, ,t, , . .., t; 1 . We are going to
define a sequence of ideals J, 2 J32> . ..D Jq D ...in U, together
with elements Eq € Def(Z,X)(qu ) , where I.Iq = U/}q .

* The ideals ] a and the deformations Eq are defined inductively. One
puts J, = mZ and constructs the universal first order family &,. In
term of equations £, is given by cx]m ; I',m and n;i) such that
(f + 2 ti.gm ) = ((x + Zti.aim).(A + Zti.njﬁ)) and
0= (a+2tl.a1‘”).d(a + 3t .nI“’) + (1" + 3t .I‘j(i)).(A +Z‘,ti.n1“))
where both equations are mod m2.

Now assume we have constructed Eq € Def(Z.X)(qu ). We look for
an ideal J ,, , m.Jq CJgyy € Jg which is minimal with respect to

the property that Eq extends to an Eqﬂ € Def(E,X)(I.Iq+1 ).

# A way to obtain such a J G+ is as follows. Consider the small surjection
0 — Jq/m.Jq —_ II/m.Jq ——p I.Iq —_— 0

We get an obstruction Ob{E_)« Tors( QM /wiTH ®(J_/m.J_).
q p) z a q

Applying the elements v,, v, . . ,v; to Ob{Eq) we gef elements
Vi, Vo, .., V4in Jq /”"Jq . It is now clear that one can take
Jq,(1 ={V,,V,, ...V, .m.Jq ). Now one chooses any Ea_+1 lifting

the element £, and then considers Ob(E,, ) etc.
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One easily sees by induction from the above construction that the
ideal J q is generated by ¢ elements V, , V, , ..., V; and m9 . We
call the elements V; mod md ., i=12, ..., 0, the equations of the
base space of the semi - universal admissible deformation to order
g -1 or simply the equations of the base space. It should be stressed
that these equations do not only depend on the chosen bases t, and
vy
importance: good choices can simplify the equations a lot, whereas

but also on the chosen lifts Eq . In practice this is of crucial
bad choices make the computations into a nightmare.

Example (3.24) :

This example is a continuation of example (3.16)4). As the map
w : Ny -—iQ% is the zero map, we have that the obstruction space
is Tors(Qi ). One easily computes that the dimension of this space
is three and has as a basis:

w, = x.diy+z); wy = y.d(z+x); wgy = z.d(x+y) .
The semi-umiversal deformation to first order is descr:ibed by the
following data:
a) the deformed curve: A, = A + Zifl t,.n, , where
A= (yz,zx,xy); n, = (y+2,0,0); n, = (0,z+x,0); ny = (0,0,x+y) .

b) the deformed a's: oy = hy. A+ t,.(X,y,2) , where

1t, tg

ts tsl
c) the deformed f is f‘1 = .4, (mod m2),
d} the deformed T's : [y = - h,.dA, - 2t, .(dx,dy,dz).
The curve is not obstructed, and a lift to second order is given by:

- 3
Ay = Ay + 205 £ (LD
The obstruction element o, dA2 + I'I.L!s2 in Tors(Q%)@(mzlmz)') is
to-(%,y,2).d (Zi'.a_,] t;.n,) - :Zto.(drnc,dy,dz).(Zif1 t,.n,)

Because in Qé we have the relation (y+z)dx+xd(y+z)=d(xy+xz)=0, we

can rewrite this expression as:
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3toty - wy + 3tyt, . Wy + 3ttty Wy e Tors(Q%_)@ (m2/m3} .

Hence the equations for the base to second order are given by:

toty =0 ;  tote=0; tota=0.
A lift of f to second order is given by f, =(ly .A, ).4, + t, (x,y,2).A,
and one can check that this family, as it stands, defines an admissible

family to every order.

Suppose that we are given admissible diagrams X X" and
pX C———-)Xw), where X' is described by £ ¢ 1. When £ -2 2,
then (3.10) implies that the first order obstruction map for X% and
X are 'the same’. In fact, the following propositions show that
when £ - €2 <12 something much stronger is ‘true: Def(£,X"?) and

Def(Z,X(m) are the same up to a smooth factor.

Proposition (3.25)
Let Esm = (Zg C——’Xs(i)) € Def(Z‘.,Xﬁ)) ,i=1,2 and let be given a
small surjection as in (12).

(2>

Let X{® be defined by fg" ¢ [Ig . If £§- fg® ¢ 1§ then we have:

T2, XM) = T3, X?).
i) Ob(E¢") = OblEg?).

iiiy Let 8' — S any surjection. Then ES( D can be lifted to §' if and
only if 55(2) can be lifted to S'. If this is the case, we can do this

(1) (2)

in such a way that fgr - fg ¢ 15.2 .

proog + We have T2(Z,X{D) = Coker(w(¥: T3 — 07, and by (3.10)

we have w'!’

= w(z), hence we get i). For ii) we assume that Zg is
lifted to Zg+. As fsu) - fS(m = hg .Ag .Ag for some matrix hg , we can
take od? - 0d? = hg .Ag and " - Tg>’ = hg .dAg . Now lift hg to a
matrix hgrand ocsm ; I‘Sm over S'. Define then the lifts for chm} , l"sfz)
by requiring the above relations to hold over S'. Then ome has
ws-m = ws-(z), so Ob(ESm) = Ob(’c:sfz)). Statement iii) can be deduced
from ii} by factoring the surjection in a sequence of small surjections.

The indicated choices above lead to fst-n— fg;?)e 15'2 . =
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Definition (3.26) :

Two deformations Esm=(25 ,Xsm) ¢ Def(Z,X) (i=1,2) are called T 2—eqniva]ent
if there are eguations fsm for Xéi) such that fsm - fs(m € IZS , where
Ig is the ideal of Zg. We denote this equivalence relation by ~.
The functor

€ — Set

S t————— Def(Z,X)/ ~

is denoted by M(Z,X) and is called the functor of admissible

deformations modulo I 2,

Proposition (3.27) :
Let £ &~ X be an admissible diagram. Then one has:

i} The natural transformation Def{Z,X) —— M(Z,X) is smooth.

ii) M(Z,X) is a semi-homogeneous functor.

i 1If XP is 13- equivalent to X% then there is a natural equivalence
of functors M(E,X™) ~ M(£,X®).

iv) The space MUZ,X) : = M(Z,X) (k[e]/7€c®) fits in an exact sequence:

0 — [1/(ttJg () + 12) — MNE,X) — TEX) — 0

Shketch of proof : Statement i) follows from (3.25). Statement ii) can
be proved by showing that ~ is an 'admissible’ equivalence relation
in the sense of [Bul], p23. {The word admissible here should not
confuse the reader.) For this one uses i). Statement iii} is essentially
trivial: the equivalence of functors is defined in the obvious way on
representatives. The fact that ~ is really an equivalence relation then
shows that it is well-defined. Statement iv) is broved along the lines
of (3.7)1). Note that by (3.10)the space Tzi-_ (X) depends indeed only
on the class of f modulo 12 . It is easy to see that the first space in

the exact sequence iv) depends only on [f] ¢ [1/ 2. b7

Cozollary (3.28) :
1f 1702 + £ ) = [1/(12 + £9)), then the base space of T —— X
and & “—X'? are the same up to a smooth factor.
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C. Obsteuctions and the +esstan.

From now on we consider an admissible diagram I - X with
Y redmced. In B. we have seen that the obstruction space for
the functor Def(Z,X) is, apart from Tz‘? , the Oy - module
Tors(()%)/w( Té}. This space however seems to be too big in general.
For example, when I is a reduced complete intersection, then f1=12
and hence we know that all obstructions vanish. But Tors(![zz1 ) £ 0
{unless ¥ is smooth) and w(Té) = 0, so the obstruction space is
never zero. In fact, it is a long standing conjecture that for a singular
curve germ one always has Tors(Qé) + 0. {Berger's conjecture, see [Be )
It turns out that in the case that Tzz = 0 there is a subspace of
Tors(sz:) which receives all the obstructions. Let us first describe
this subspace, which we call N*/1. Recall the exact sequence {2) of
Os - modules:

0o — i1 —3 5 0'e0yg » O » 0

Now take the double dual of the map d. As Homg{1/[1,0Og )= Ny
and 0! ® Oy is Oy - free, we get:
%
o — NE* —-cl—“-?(Ql@OZ}** =~ Q} ® OZ
where NZ* = Homz(NZ,UZ) is the dual of the normal bundle.
Further, there is the double duality inclusion 1/ 1 C—-—)Nz* and hence

we get an inclusion:
N*/1: = N&/(1/[1) ©—— TorstQg)c O (13)

(N*/I is a torsion OE - module, so it lands in Tors(Qz]}.)
Note that if £ is a complete intersection, then 1/i2 is a free
Oy - module, and hence N*/1 = 0.

Conjecture (3.29) :
N*/1 = 0 if and only if I is a complete intersection.

We have to admit however that we do not have overwhelming

evidence for the truth of this conjecture. In practice it is hard to
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compute the space N*/L. If T is Cohen—Macatilay of codimension 2,
one can prove that N*/1 &t% (Ws ’OZ‘. ), but this does not seem
to be of great help to settle the conjecture even for space curves.
Note that conjecture (3.29) implies Berger's conjecture, because for a
complete intersection curve singularity Berger's conjecture is known

to be true.

Lemma (3.30) :

Via the canonical injection 1I7fI — NZ;'E the element B.A ¢ is

send to the homomorphism B: Ny —O¢;n — B.n .

proof : Disentangle the double duality definition.

]

From the above we see that for an f ¢ I one has (c.f. (3.11):
fefl € the o« - map of f is the zero map.

As the above statement can be made to work over any base S, we get
an alternative way to express the condition that Zg C————-»xs is an
admissible deformation. First we define the relative primitive ideal | Ig

as follows:
fg« fIg © Ig ¢ Cy /s (€ (5,95 C Ig ).
In other words, there is an exact sequence
0 —1g/f1g J—»QP’S/SQ)OES ——Qfg/s— 0 (4)

which is the relative version of (2).

“Theorem (3.31)

Let £ be a reduced space and let g ——S be a deformation of £

over S. Let IS be the ideal of ZS. Then there is an inclusion
Is/[1g “—Nzg

and hence an equivalence
Zg C— Xg admissible ( & fg« fig ) &

the « - map og : NES N — OZS is the zero map.
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proof : The (almost) dual of (14) is the exact sequence

i
0 — 85, — Opg/s®Usg — Ny — Ty — 0

where the group at the right hand side can be interpreted as the first
order deformations of the map Xg ——— Spec(S). The dual of this
sequence starts with the exact segment:

1 * 1
0 —PHOHIZS( TZS/S ' OZS) _ NZS — ‘QPS/S ® OZS

We claim that the group at the left hand side is actually zero.

Using (0.3) we can conclude:
1 - 1 -
Homz (TZS/S® Oz, Oz) =0 é HGmZS(TZS/S' OZS) =0,

But as I is reduced by assumption, and TZ’S /5% OZ is a torsion Oy

module, this first Hom is indeed zero. ®

This altermative way to express admissibility of Zg s Xg also
leads to an alternative obstruction theory. For this to work we need

an extra condition on Z.

Liemma (3.32) 1

Assume that Tzz = 0.

i} The normal bundle is compatible with restriction, i.e. if §8' — S5
is a surjection of rings and Zg. —*Spec(S’) is a deformation, then

ii} The exact sequence {12) gives rise to an exact sequence

+ 0

and an isomorphism V@ Ny, & V@Ns (i.e. Ng is flat).

Qutline of prock : It is enough to show this for small extensions.

Nyg can be interpreted as the space of (embedded) deformations of
the map £ —Spec(S) over k[e]/(¢ ). With this interpretation, state-

menti) is equivalent to the extendability of a family over §'xS[el/ (%)
to a family over 5'Te]/(e?). This is certainly implied by the condition
T22=0. Statementii) now follows from (0.1) {take i=0,R=P,M=Ig,N= Ozs.)

&®
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Let Eg = (}ZS —Xg ) ¢ Def(Z,X)(S) be an admissible deformation
over § and g ¢ Def(Z)(§8") a deformation of I over §', lifting Zg .
We will construct an element ob(£g,Zg? ¢ N /1 ® V , which maps to
the element Ob(Eg, g+ )¢ O ®V of (3.20) via the map {13).

The construction is as follows:

# Over S we know that the « - map og : st —-—-—)OZS is the zero map

by (3.29). Hence, for all mg « stthere is a Y5 = Yg{mg ) such that
olg . Mg + g .AS =0,

* Noiv a lift of Ag to AS' is given. Take arbitrary lifts of og to wg: ,
Y5 to vg and of mg to mg- ¢ NXS' . (For mg this is possible by

(3.32}i))) Let th 1= ogr.mgr + Yge AS'
* Consider now m ¢ Ny , m = -m-g

Claim : the homomorphism h : Ny —— Uy ® V ; m ——hg: gives
rise to a well - defined element ob(Eg,Zg: ) ¢ N*/1® V.

pzo06 ¢ One has to check several things. For example, when we
choose another lift for «g. , the difference is of the form v®B for
some v ¢ V and B . The quantity hg. then changes by v®B.m. But
by (3.30) this means that the homomorphism h is changed by an
element of 171, so the class of h in N*/1 stays the same. We omit

the further straightforward checks. X

To get an obstruction element only dependent on g and not on Zg-,
we have to divide out N*/I by a subspace that corresponds to W(T%)
in Tors(QZ}: ). To put this subspace in a proper setting we introduce

a symmetric bilinear form on Ny which is of independent interest.

Definition (3.33) ;

Let £ ©“—X be an admissible diagram, defined by f ¢ [I. Assume
that Z is reduced and that Tzz = 0.
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The Hessian H : Ny x Ny ——— Oy is a symmetric bilinear form

defined by the following four steps.

i) Let n and m ¢ Ny . This means that for all r ¢ R we can solve
r.n+ s(n)A = 0 and r.m + s(mh.A = 0 for s{n) and s(m). (Of

course, s{n) and s(m) will also depend on'r e R .)

ii) Recall that there is, in general, a pairing T% x Tz]: ———-ng .The
vanishing of this pairing between (the classes of) n and m just
means that one can find a p and t such that for all r ¢ X one has:

r.p + s(n).m + sim).n+ t.A=0

In particular if Tzz = 0 {as we assumed) this applies.

iii) Because the « - map of f is the zero map, one can solve the

equations oe. n + y(n).A =0 and o.m + v{m}.A = 0 for y(n) and y{m).

iv) Now put H{n,m):= ¢.p + y(n).m + y(m).n .

Proposition (3.34) 1
The Hessian form H has the following properties:

i) H : Ny x Ny —Os is well - defined, i.e. it does not depend

on the choices made in the above steps.
ii) For & ¢ © one has H(n,3(A)) = - 3 Jw.n .
iii) For &, and ¢, ¢« ©® one has H(3,(8), 8,5(A)) = - &,(3,(£)).

iv) By transposition we get a map h : Ny —— Ng .

The composition Ny h, Nz* —ol'e Oy is equal to the
map -w:Ny —-—bQ]®OZ of (3.3).
v) If Fe 12 f =(h.A).A for some matrix h, then H{n,m) = -2.h.n.m.

proch @ Statement i) follows by a straightforward check. For example,
given f, then the difference 3¢ of two choices of ¢ is ¢ K. This o
induces §y's such that S«.n+ 8y(n}.A = 0 and Sa.m + Sy(m).A = 0.
Then the induced change SH in H is given by Sa.p + 8y(n).m + 8y(m).n.
But by the definition of p this quantit} is in the ideal I, hence H in

OZ is independent of the choice of . Statement ii) can be seen as
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follows: by differentiating the relations r.A = 0 and r.n + s(n}.A = 0
with respect to & ¢ & we get the expressions r.${A) + 9(r).A = 0 and
r.84n) + stn).3A) + 8(r).n + Hs(n)).A = 0 . Hence 3(n) can be taken
as the p of n and $(A). From a.A = f we get v(8(A)) = (o) - FJw.
Making the substitutions and using S(a.n+y(n}.A)=0 we get ii.
Statement iii) follows from ii) and expresses the fact that H is an
extension of the second derivative of f from vector fields to normal
vectors. Statement iv) is just another way to express ii). Statement

v) follows by direct calculation. R

Cozollary (3.35) 1

D PgiA) = ker(h: Ny —— N*/I); TA(X = ker(h: T — N*/D).
where the maps h are induced by h : Ny -——»Ng .

i) The map ¢ : Py(A) —1/[1 is injective if and only if the map
h: Ny — Ng injective,

iii) The obstruction Ob(Eg) ¢ Tors(Q$)/w(Tg)® V lifts to an element
oblZg) ¢ Coker(h : Td —N*/D@V & Tors(Qil/W(T)@ V.

peoof : Statement i) follows from (3.34)iv) together with (3.5) and
(3.7). Statement ii) follows from the fact that ¢ is injective if and only
if the map w: Ny —s0 ® Oy is injective. Now use (3.34)iv) again.

Statement iii) is obtained by studying the dependence of ob(Eg,Zg"
on the chosen lift Zg: . We leave the details to the reader.

The relation between the Hessian form and the number of D -
points appearing in a generic {admissible) perturbation was first noticed
by Siersma (see [Si], remark 4.1) in the case that X is a smooth curve
germ. Pellikaan (see [Pe 2], pp.27-32) generalized this to the case where
T is a complete intersection curve and more generally to f ¢ 12 in the
case that T is syzygetic {(see [Pe2] for a definition; space curves are
syzygetic). He defined the Hessian form in those cases essentially by

formula (3.34)v). T. de Jong in [Jo] introduced for a general germ of
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a hypersurface (X,p} with a one dimensional singular locus Z and
transverse A, - singularities an invariant VD_ (X,p) (possibly negative!
; for a D, -singularity, VD_ = 1 and for the triple point T .
VD_ = -2) and showed an appropriate continuity statement under
admissible deformations of ¥ “—#X. We will relate this invariant VD _,

now to the Hessian form H.

Reminder (3.36)

i) Let (X,p) C {€™* 0) be a germ of hypersurface singularity defined
by £ ¢ O and with one dimensional singular locus £ and transverse
type A, . Put €p:= {9¢®]|3(f)=0} and O(f) : = ©,® Oy . Then the
virtual number of D_- points, VD, is defined by

VD_(X,p) : = dimg{05/6(N) - 3.5(Z,p).

where gis the normalization of £ and § the delta invariant.

i) Let Y ¢ P™! be a projective hypersurface of degree d, with a one

dimensional singular locus % and transverse type A,. Then:

> VD (X,p) = (nd - 2(n+2)) . deg(8) + 4. X(Og)
peL

iii) Let (X,p} C{C™7, 0) be a germ as under i). Then there exists a
Y ¢ P™*! as in i) with a point y ¢ Y such that:

a. {Y,y) = (X,p)

b. Y - {y} has only A_ and D_ - singularities.

proof : For definition i) see [Jo], where one also finds the proof of
the continuity under deformation of VD, . Result ii) is proved in [J-31.
The proof of iii) involves Sard type of arguments and results on I-finite
determinacy (see [Pe3]) and will appear elsewhere. We remark that
because the total number of VD_, on a projective surface in P3 is even,

one has in general to admit D_ - points in the compéctification. ®
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Theorem (3.37) ¢

Let (X,p) be a germ of a hypersurface with one dimensional singular
locus T and transverse type A,. Assume that Tzz = 0 and that X is
smoothable and syzygetic. Then:

VD_(X,p) = dimg {Ng*/h(Ny) - dimg(NY1)+ dimg(f1/17)

pzoof @ First we globalize the germ (X,p) togeta Y C P™? as in (3.36)
iii). The compactification of T is denoted by E. It is not hard to see
the the Hessian form H : Ny ® Ny — Oy can be globalized to a
map iy : Ng ®Ng — Oz ®Ny , where Ny is the normal bundle
of Y in P™. Now it is checked by calculation that the theorem is true
for the A_ and the D - singularity. So by statement ii) of (3.36) it

is sufficient to ;;rove that

S dim( Ng*y/h (Ng 9) - dim(Ngp/(1/fDy) » dim(( 1//Dp) =
pe &

= (nd - 2.(n+2)) deg(E) + 4. X (D)

where the index p refers to the local invariant of {Y,p) at that point.
The global Hessian gives rise to an injective map
with as cokernel a sky scraper sheaf at p of lenght N_-,—,ip/ hp(NE,p)'
Hence the left hand side of formula above is equal to

Y (NF®Ny) - X(Ng) - XINg) + X (/12
Furthermore, X (Ng ® Ny) = X(Ng) + 2.n.deg(Y).deg(Z), by Riemann-
Roch, because Ny is a line bundle. So the statement is equivalent to:

WA/TD) -~ X(Ng) = 4. X(Dg) - 2.(n+2) . deg(&) - ()

But this is a statement that only depends on the curve E. By a theorem
of Pellikaan (see [Pe2], thm. 4.5} we know that the statement of the

theorem is true if we start with f ¢ 2 and so the theorem holds for

any f. (Another line of argument to see (¥ is as follows: (#) is true
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for smooth E; the conditions syzygetic and Tzz = 0 give that the left
hand side is constant under deformation of E; I is assumed to be

smoothable, so (¥) must be true.) b

Remazk (3.38) :

It is desirable to have a more conceptual or Jocal proof of the above
theorem. We do not know whether the theorem is true for nomn -
smoothable curves T. But in any case the conditions on Z are satisfied

when X is a germ of a weakly normal surface in c3 .

The folowing corollary is a partial generalization of [Pe 2], thm.1.13.
Corollazy (3.39) :
Under the same assumptions as for {3.37) we havé:

JD) = o o(D)+VD_(X,p) + dimg T3 - dimg(S /%)

where j(f):= dimg(1/J(D) and ¢f o(F) : = dimg(S1 + JH/JE).

proof : Consider the following commutative diagram with exact rows:

'Y 'Y 1 'y
0 — 680./0y » Ny YT »0
l_ldf lh lh
0 — 1/ 1 » Ngv yN¥*/T—— 0

The map _1df is induced by $¢® — $ 1df= &(f)
The map h: Ny ——-—*NZ* is injective and hence the Jdf is injective.

Comparing the indices of the vertical maps of the diagram then gives:
dimg(1/ S 1+ J(F)) = dime(Ngt/h(Ng)) - dimg(N*/1)+dimg( T3 )

The exact sequence
0 —— (I + JEWIE) —I/Jif) —— /(1 +J(f)) — 0

then gives the corollary when we use (3.37). ®
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We give another noteworthy formule for VD for a germ (X,p} of
a weakly normal surface in 3. We let n : X — X be the
normalization map, and let ¥ = 0} L) be the inverse image of L under
the normalization map. We let b be the number of irreducible

components of X at p.

Theozem (3.40) :

With the notation as above we have:
VD_(X,p) = w(¥) - 2.u(2) + 2 - b.

proof : We compactify X and £ as in (3.36)iii) to get a Y and E.
Let deg(Y) = d, deg(E) = e. Consider the normalization diagram:
Y

ln

C— Y

[1] & [R

where n: Y — Y is the normalization map and g = n 1@,

Note that because X is weakly normal, the ideal sheaf 2 of & in
Oy is equal to the conductor Homy(n,OF, Oy).

From the exact sequence 2 —— Oy —» g we get after applying
Homy (-, 0y} the exact sequence

0 » Oy »n, OF ——+8xtw}(0_q_,oy) — 0.
But Ext\} Qg ,Oy) = Ext{v(o_g Wy )®&}§! =Wg ®(.O§! because
(v is a line bundle and using the adjunction formula. Hence:

0 » Oy » 0, OF ——+wg®m-§1 — 0

The normalization diagram is a pull ~ back, hence we also get an exact

sequence of the form {see [Str],1.2.3)

—t

-1
0 » Og »n, Oy —WgBWy —— 0 (14)

So we get X(OF) = X (g + X(Wg®W)
K (g ®Wyh = XWg) + degOg®wyh.
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As W y & Oytd-4), we find deg(QOy ®W y ) = el4-d). By Serre
duality, Y (Og) = - Y (W 5 ), hence:
X(OF ) = e(4-d) (1

Substitution of this result in formula (3.36) ii) then gives:
SVD_(Y,p) = 2(2.%(Og) - X(O). (15)
peZ

One has 2.¥(Og ) =wE) - Niop (E) (see[Grel, p.149). Remember
that & —E is a 2:1 ramified cover, so it is an easy topological matter
to relate 'X_(g) - 2.%(B) to Iocal data of the normalization. Using
all this we finally find the formula of theorem {3.40). ®
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§ 4. Deformations of the Notmallaation.

In case we have a hypersurface X with singular locus Z in
codimension 1, we will prove that under certain circumstances there

is a natural equivalence
Def(%,X) ———» Def(X — X)

where Def{X ——»X) is the deformation functor of the diagram of
the normalization map X ——3 X, ie. the functor of simultaneous
normalization of X (see [Bu]). The above equivalence is particularly
aseful for the study of the deformation theory of normal surface
singularities. By projecting such a normal surface singularity into 3
one gets a hypersurface X together with a curve Z of double points.
By the method of § 3. one can compute the base space of a semi-
universal deformation for Def(Z, X). We will give examples in § 5.
The problem with simultaneous normalization over an infinitesimal
basis is that one cannot use the usual construction of integral closure
in the total quotient ring to get }?(JS out of Xg : over S = spec(klel/ (£2))
every element ¢/x is integral for xe OXS a non zero divisor. This is

reflected in the fact that the mnatural forgetful transformation

Def(¥X » X} »Def(X) is not always injective.

It appears that the missing bit of information to construct X out
of X is just the conductor C := Homy (OF, Oy ). We can consider
Of as a module over Oy . When we deform Oy flat over S to an
Oxg . it turns out that deforming the Oy-module OF to an S-flat
Ox

to an Cg. However, the conductor C is a very special ideal in OX‘ the

g ~module U)'(“S is equivalent to deforming the conductor C flat

fact that 05‘(‘ carries a ring structure is equivalent to:

Ring Condition (R.C.)
-H.omX(C,C) = -H.omX( C, OX)
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The last statement makes sense over any basis S, and it turns out that
elements of Def(X —X)(S) correspond to deformations of X and
C to Xg and Cg for which C g still satisfies the corresponding condition

(R.C.). To be precise, one has the following theorem:

Theorem (#4.1) :

Let ¥ ——X be a finite surjective and generically injective mapping.
Let © be the subspace of X defined by the conductor ideal
C = Homy (OF ,Ox). Assume that:

i) X is Cohen - Macaulay

ii) X is Gorenstein

Then there is a natural equivalence of functors

Def(X » X) » Def(E & X,R.C.)

Here the second functor is deformations of the diagram Z — X
for which the ideal of Zg in Xg satisfies condition R.C.

The next thing to do is to relate (R.C.) to admissibility. For this

we need some more conditions on X and Z.

-

Theorem (4.2) :

Let ¥ ©&——X be an admissible diagram. Assume that;
i) X is a hypersurface
if)  is Cohen-Macaulay of codimension Z.

iii) T~ is reduced.

Let Zg C—-—DXS be any deformation of this diagram over S. Then

equivalent are:

i) the map «g : Ny —-—DOZS is the zero map (see (3.31)).
ii} the ideal Ig of Zg satisfies {R.C.).
iii) the diagram Lg “— Xg is admissible.
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When we combine theorems (4.1) and (4.2) we get the following:

Theorem (4.3) ¢

Let X —— X be a finite, generically injective map. Let Z be the

subspace of X defined by the conductor. Assume that:

D Xis Cohen-Macaulay.
iiy X is a hypersurface.

iii) T is reduced.

Then there is a natural equivalence of functors

Def( X — X) » Def( Z,X).
To complete the picture we state one other theorem

Theorem (4.4)

Under the same conditions as in theorem (4.3} one has that the natural

forgetful transformation

Def(X »X) » Def(X)

is smooth.

Theorems (4.3) and (4.4) together imply that the base space of the
semi-universal deformation of X is, up to a smooth factor, the same
as the base space of the functor Def(Z,X). So the whole complexity
of deformations of normal surfaces is reflected in the theory of
admissible deformations of weakly normal (i.e. generically transverse
A, ) surfaces in c3

The rest of this paragraph is devoted to the proofs of the above
stated theorems. For notational convenience and clarity of exposition

we change from geometric language to algebraic language.
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Let R and S rings as in § 0. Let QR D R be the total quotient ring
of R.

Definition (4.5):

A fractional ideal is a finitely generated R - module M such that:

i) MC QR

i) M contains a non - zero divisor.

Liemma (4.6} :

) If M is a fractional ideal in QR and M is an § - flat R-module,
then M is a fractional ideal in QR.

ii} Let M and N be fractional ideals in QR. Then HomR(M,N) is also
a fractional ideal and can be identified with {x¢ QR| x.M c N}

proof : Left as an exercise to the reader. We only note that the map
from Homg(M,N) to QR is given by: (o : M N »of{m)/m

(m non - zero divisor in M). =

Proposition (4.7}:

Let R be a Gorenstein ring over S, i.e. ( rss © R. Then the duality

functor M ———M" : = Homy(M,R) on the category of R-modules

has the following properties:

i} it converts fractional ideals into fractional ideals.

ii) it converts MCM's over § to MCM's over S (see (0.4)).

iii) it is an inclusion reversing involution on the category of fractional
MCM's over S

iv) it commutes with specialization for MCM's, i.e. (M)¥=(M™)

proof : i) follows from (4.6)ii) and i) follows from the Gorenstein
assumption and proposition (0.10)1). The involutivity iii) resuits from
(0.10)ii) , whereas iv) follows from (0.7)iii) (and (0.9)) ®
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When a fractional MCM happens to be an overring R of the ring R,
then its dumal module C = HomR(ﬁ,R) is an ideal in R, called the

conductor of R over R. This conductor has a special property:

Proposition (4.8} :

Let fi 5 R be a fractional MCM over S and let CCR be its dual

module. Then equivalent are:
) Risa ring (with ring structure induced from R C QR)

ii) The ideal C satisfies the Ring Condition (R.C.) , i.e. the natural

inciusion map
Homg(C,C) & Homy (C,R)

is an isomorphism,

proo : i) = i) : as we have ﬁ=HomR(C,R) by (4.7)iii) we see that
if Homg(C,C)~ Homy(C,R) then R gets the ring structure as the
endomeorphisms of the R - module C.

i) =>ii) : for this we need the 'duality lemma for finite maps'

(see[Ha], ex. 6.10, p.239) or 'change of rings isomorphism’

Homﬁ(M.HomR(ﬁ,N)) ~ Homg(M,N) .

{Here M is any finitely generated R - module and N any R - module.)
Now it easy to see that the conductor C is also an R - ideal, so we
can take M=C and N=R in the above formula to get Homy{C,C)=
Homg, (C,R). But clearly one has Homg(C,C) 2 Homg (C,C). Combining
these last two facts we get Homg{C,C)=Homg (C,R) . =

prook of theotem (4.1} : Start with a map X —X as in the statement
of the theorem. Consider a deformation Xg over S. Then the category
of diagrams ﬁS —Xg corresponds exactly to the fractional MCM's
for the ring R = OXS having OF as special fibre. By (4.7) and (4.8) the
duality functor transforms these into diagrams Zg C———’XS for which
the ideal satisfies {(R.C.). R
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We now turn to the proof of theorem 4.2 . Let P be the local ring
of the ambient space, which is regular over the local ring S of the
base. We assume that Xg is a hypersurface, so the local ring R of Xg
is of the form R = P/(F), where F ¢ P is a non - zero divisor. Let I
be the ideal of Zg in the ring R, so the local ring of Zg is R/I. As a
subspace of the ambient space, Zg is given by an ideal I, in the ring
P. By assumption, Zg is CM over S of codimension 2. This implies that

the equations of Zg are of a special form.

Lemma (4.9) :
There exists a free resolution of I, as a P - module of the following

form:

Y . prl .
0 P » P » I

-
[

Here M is a certain rx(r+]) matrix and the generators A, of I (i.e.

the components of the map A) are given by the the rxr minors of M.

proof : The resolution of fp over P has the form as above, by the
theorem of Hilbert-Burch-Schaps (see [Ar 1],pp.16-17.) As I, is S -

flat by assumption, we find a resolution as above over the ring P. ®

Because Zg is a subspace of Xg we have Fe Iy , ie. we can write :
r
F= ) o.d
i=0

Proposition (4.10) :

There is a free resolution of I over P of the form:

M A
0 yprH! » pT11

-
oy
-~
o

Here the matrix M is obtained from the matrix M by adjoining the

vector {otg , 0y , « v vy O, ) as zeroth column, so det( M) = E.
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pzoof : As we have R/I = P/I, we get an exact sequence of the form:

Q ——— PF )

The result now follows from (4.9) and the following commutative

diagram from which one can conclude the exactness of the bottom

TOW.
A
0 y pf — 2 :Pr :lll, »0
M A
0 y prH1 y p*! ’1 »0

Corollazy (4.11) :

i} The modale I has a 2 - periodic resolution over the ring R of the

following form:

P ¥ ®

» G » F y g - »1 »0 .

Here ® = M mod Fand ¥ = AT ® is the Cramer matrix of ®, i.e. the
matrix having as entries the rxr - minors of ®. °F and ] are free R -

modules of rank (r+).

if} The dual module IV = Homg(I,R) has a 2 - periodic resolution over

the ring R of the form:

Here ® is the transpose of the map ®.

iii) One has I =~ Coker(d) = Ker(®d) »Im(¥)
and I & Coker(® ) % Ker(® ) ~ Im(¥ ).
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proog : It is a standard matter to come from the the resolution over
the ring P to a resolution over R. (Matrix factorization, see (Eil)
Hence we get i). ii) is obtained by dualizing 1) and using iii), which

follows from the 2 - periodicity of the complex under i). 2

Let N := HomP(IP. P/1g) be the normal bundle of Zg in the ambient

space. In §3. we already encountered the so-called o-map

o N — R/I

(@: Ay — 1y ) '—_*Z“i'ni

The pivotal result about the « - map is the following.

Theorem {4.12) :
With the notation as above, the following are equivalent:

i}  Homg(l,D= HomR(I,R) , i.e. I satisfies {R.C.).
ii) the entries of the matrix ¥ are in I.

iii) the « - map « : N — R/I is the zero map.

peook + By (4.11}iii) , an element § ¢ Homyg (I,LR)= I is represented by
an element §' of &~ in Im(¥"). To evalute 3 on an element i ¢ I,
represent i by an element i' ¢ & and let §' act on i’ . As §' ¢ Im(¥™)
we see that the ideal generated by the matrix elements of ¥ (or ¥)
is the ideal generated by the 5(i), § ¢ IV , i ¢ I. Hence i) € ii).

Because Zg is CM over § of codimension 2, a generating set of N can
be obtained by ‘perturbing’ the matrix M (see [Ar1], p.16-21). To be
more precise, let A be any rx(r+1} matix with entries in R. Then one

has:

AN M+en) = (M) + e ATHMIA N mod €2,

So )\ gives rize to a normal vector n* ¢ N corresponding to the
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homomorphism n* : -— R/I

IP
A —— AT AN,

A little calculation then shows that

a(n*) = Trace ( ¥. 1)
where ¥ is the matrix obtained from ¥ by erasing the Oth row.
When we let A run over the elementary matrices &jj » 1gisr, O<j<r
we get

ofn®ij) = W i
and hence the equivalence between ii) and iii}. ®

Remazk (#.13):

Property ii) in (4.12) can be reformulated as a property of the matrix
M or ® and is called the Rank Condition in [Ca] and [M-PI:
an (r+1)x(r+1) matrix ® is said to satisfy the Rank Condition if the
ideal generated by the rxr - minors of ® is' the same as the ideal
generated by the rxr - minors of the matrix obtained from & by
deleting the first (zeroth) column. Catanese [Ca] also calls this the
Rouché - Capelli property. In any case, the abbreviation (R.C) seems
extremely appropriate. For a discussion of the equations defining the

ring Homy(I,I) we refer to {Ca] and [M-P].

prook of theorem (4.2): By (4.12) we have that (R.C) is equivalent to
the condition that the « - map is the zero map. By theorem {3. 31)

we have: If 1 is a reduced ideal in R then
® - map is the zero map & (F, Jp) C I
Hence, under the assumptions of (4.2) we have indeed :
I=1Ig satisfies (R.C) € « = ag - map is zero map &

& Zg & Xg is admissible. ®
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Remazk (#.14) :

Theorem (4.3) states that in case of a finite generically injective map
X —X between a Cohen - Macaulay space X and a hypersurface X

with a reduced conductor we have an equivalence of functors

Def( X y X) ——— Def(Z,X)

where I is given the conductor structure,

We have seen in (2.6) an example where Def(X,X) —Def(X) is not
injective, although = was reduced and X had an isolated singular point.
One calculates that in (2.6) the conductor of the normalization map
is just the maximal ideal. Hence, by theorem (4.3) this means that
(2.6) also affords an example where Def(X ——X) —Def(X)} is
not injective, i.e. an example of non- unigieness of the normalization
mapping in deformational context. This can also been seen directly:

Consider the normalization mapping:

La'd

X — X

k[x,yl/(x3 + y2) C—— k[t]
X p———— - 2

y —) t3

This mapping can be deformed non -~ trivially over kle]/ {e2 ) without
changing the image by x — -t - 2e; y ~—t3 + 3et. This
corresponds exactly to the defonﬂation in {2.6). More generally, for
the normalization mapping X —X of a curve germ X one has the

following result (see [Bul], p. 82):

dim ( ker (Def(X —X)(k[e1/(s2)) ——Def (X)(k[e1/(e2)))) = m-r

where m is the multiplicity and r the number of branches of X at the

special point of X.
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Remazk (4.15) ¢

Let I be an MCM ideal in a hypersurface ring R satisfying (R.C) and
let R = Homg (ILLI)= I¥ > R the ring extension of R belonging to it.
As the complex (4.11)i) is 2 - periodic, it is not hard to compute all

the higher Ext' s of I. The result is:

+  Homg(LD =R
+  ExtZMLD=N

N k=012 ...
*  ExtZ® (LD =R/ }

In fact, taking Homg(I,-) to the exact sequence

0 » 1 » R » R/1

-
o

we get a long exact sequence
0 — Homy(LI} ——bHomR(I,R) — Homg(I,R/I} —
—— Extg (L) — BExt} (LR — ..

As 1 is assnmed to be MCM (over S) and R % Wyg,g we have that
Extllz(I,R)=0. Hence, 1 satisfies (R.C) € N=x Extll (I,D), where
N = Homg(1,R/1) is the normal bundle of Zg in Xg . Note that this
normal bundle is also equal to the normal bundle of Zg in the ambient
space Homgp (Ip ,R/1} if the a - map is zero.

The 2 - periodicity gives that Extlg (L 1) is a quotient of Homy (1,1).
One can check that annihilator is precisely I.

Thus we get a Yoneda Ext - pairing
Extg (L1) x Extg (1) — Ext2 (LD
Y : N x N ——  R/I1

In general, this pairing is not symmetric. One can proof that the
symmetrization Y" of Y takes values in R/] and can be identified with
the Hessian H of 8§ 3 {see (3.32)). We do not have an interpretation
of the anti-symmetric part Y ~ of Y, although we expect it to contain

interesting new information.



In the deformation theory of X together with the module I one

encounters natural maps T)i{ —-—’Ext;{H(I,I). We only state:

* T)? —_ Exi:}]((I,I) is the zero - map.
+ Ty —— Extg(LI) has as kernel I/(£,J(f)

Indeed, for g ¢ I one can lift the module I over the hypersurface with
equation f + e.g , ¢ = 0. But it requires extra conditions on g that

the deformed I satisfies (R.C) or stays admissible (see § 3).

To conclude this section we give a result that implies theorem {4.4).
Proposition (4.16) :

Let X —#X bea mapping and X C Y an embedding of X in a space
Y smooth over the base field. Then :
i) There is a natural transformation of functors
DeftX — X) » Def(X —— Y)
i) The natural transformation Def(X Y ) »Def(X) is smooth.

iii} If X is Cohen-Macaulay, X is a hypersurface in Y and the map
X —X is generically injective, then the transformation in i) is

an equivalence of functors.

Sketch of prook : Let ()'\('s '_’XS) ¢ Def(X ——X). One can extend
the inclusion X CY to an inclusion Xg CYg {=YxSpec(S}), because
all deformations can be realized by embedded deformations. Now the
composition ﬁS —Xg CYg determines a well- defined element of
Def(X ——Y). This gives i). Statement ii} follows immediately from
the smoothness of Y. For statement iii} we to construct an inverse
to transformation i), i.e. an image functor. Let (f('s —Yg ) be an
element of Def{X —— Y). Let R be the local ring of %'S and P the
local ring of Y, Because Ris Cohen-Macanlay {over 5}, it has a presen-
tation as a P - module as the cokernel of a square matrix N (in fact,
it is the transpose of the matrix M of (4.10)). Now define Xg to be
the hypersurface in Yg given by the equation det{N) = 0. It is now easy
to check that (Xg ——Xg )¢ Def(X —X)(S). o
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§ 5. Examples and Applications.

Consider a germ X C €2 of a weakly normal surface and let = be
the reduced singular locus of X. By theorem (4.3) Def(%,X} is naturally
equivalent to Def(X —X), where n: X —X is the normalization

map. Furthermore, by theorem {4.4) the natural forgetful transforma-

tion Def(X »X) »Def(X) is smooth. Consequentely, the space
ijof first order deformations of X is a quotient of the space THZ, X)
of first order admissible deformations {see § 3). So in order to describe
Txl in terms of T}, X) we have to identify those first order admissible
deformations which deform X trivially. Recall that by theorem {3.15)
one has THE,X)= Py(A)/(£,J(f)), where f ¢ C{x,y,z} is an equation
for X.

“Theotem (5.1) ¢

In the situation as above one has:

Tg = THEXW/Og . J(D (= Px(AV/ (£, OF.JiEN )
Here Og .J(f) is the ideal in Oy generated by J(f).

proo : Let (®,¥) the matrix factorization as in (4.11). So we have
Og = Coker(®"). If we choose a basis 1 = uy , uy, . . ., u, for F7
we get an embedding i : X “—SpeciC{x,y,z}® Clu, ,u, ,...,u, D-
: = Y, Part of the equations of X ¢ Y is given by:

r
D u.®y =0 §=0,1,2, ...t (#)
i=0

{For a more complete discussion of the equations of ¥ in Y we refer
to Catanese [Ca] and Mond & Pellikaan [M-P].) To get Ts% out of
TYZ,X) we have divide out the action of all the vector fields on Y ,
ie. Tj% = Py (A/(f, ©y(f). As an C{x,y,z} - module, ©y is generated
by u, .09/du, , uy /X, &, .0/dy , uy .0/dz. Consider the matrix
v kD (k= 0,...,t;i=1,...,t)with entries:
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vikl} _ gv v
M MR TR Y

where 3, y is the Kronecker delta. This matrix satisfies (R.C) over the
ring Clel/{e? ), as is easily checked. As det(®~ KDy = £+ £.8,, .f, this
gives a trivial deformation of X. But by differentiating (*) with respect
to u,.d/du, we see that the effect of this vector field on the

vikl)

embedding X C Y is just described by the matrix ® . Hence, to

get Ti« from T(Z,X) we only have to divide out O .Jif). B

In general it is not so easy to use this direct description of OX.J ().
In fact we have another description of Og .J(f) —— Oy. We can
expand the 1 - forms o of (3.1}(5) into a matrix w=( "’ji) defined by

t
/3% = 3, wj; -4 (7=0,1,2,...,m
i=0

-

Theotem (5.2} :

With the notation and the assumptions as above one has that

Og. J(£) is the ideal generated by the entries of the matrix

w. ¥Y.

proof : The elements u_ ( m=0,1, 2, . . ., t) of Og correspond to
the homomorphisms [u_J: & ——¥{,, of Homy(LD) = O’X; )

So [umaf/axk]: A |—>Z wkl.Ai.‘i’}’m . As we have relations of the
form ¥y, A = Y|y -4; (modulo f -) we see that the homomorphism

[u_,.0f79x, ] corresponds to multiplication by Z O Y € Ox - ®

To compute Tiy we can use any X which has X as normalization.

We will give some examples.
Examples (5.3):

1) f=22 - y2(y+ka . This is the Jk,w - singularity (see [Si]).
The normalization X is smooth, and the ideal Py (A) = (x¥y,z,v%).

The matrix factorization of f is given by:
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( z y(y+xk)) ( Z -y(y+xk})
oY = ; Y o=
¥ z -y z

Furthermore, one can take for the w - matrix the following:

0 k.xkly -k.xk1y2  kxkyz
W = 0 y(3y+2x%) | ,so w.¥¥= | -y(3y+2x¥) z(3y+2x¥)
2 0 2.z -2.y{y+xK)

So indeed Qg .J(f) = (y%,x¥y, z) and thus T% = Q.

2) f=xz? - y2(y+xX). This is the Q, _ - singularity (see [Si].

‘We take
Xz (y+x¥)
sz( yty )
y z

Because Og ~ Coker(®”), we see that Oy is generated as Oy - module

by 1 and u := xz/y . The equations of X in €* are :

uZ = x.(y+xX) ; ay=xz ; uz = y(y+x¥)

The inverse image of the singular locus under the normalization map

k1, y=0;2z =0, and so is an A, - singularity.

k-1

is given by u® = x
The coordinate transformationu’'=u;x'=x;y' = y+xk 12 =z +uUx
transforms the equations into (uf=x".y;u.y=x".2";u.z'= y"2.
Hence, X is isomorphic to the cone over the rational normal curve of
degree 3. It is well known that dim T}']{ = 2 (see [Pi]). One has
(Og JU),E) = (xy% xz,22, 3y? +2x¥ y) and Py (A} = (y%,yz, xz,%* y).
{Computations left to the reader). Hence T}JZ is represented by the
classes of yZ and yz. We leave it to the reader to do more examples,

e.g. one could try f = xyz + yP*3 + z4*3,_

3) f= (yz)% + (zx)2 + (xy)? . This is a continuation of example (3.16)4)
and (3.24). Here one has X = Cone( |Q(4)]: P! ©—3P* ). By Pinkham,
{see [Pi]), dim Tj% = 4, We already know from (3.16) that:

PylA) = (y%z, y22, 2%%, zx2%, X%y, xy%, xy2z) = m*NL

One calculates that (O J(£),f) = m* N I + J(f). A basis for Tg
X X

is represented by {xyz, y2z + yz2, z%x + zx2, x%y + xy?}.
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Let X be a germ of a mormal surface singularity. Consider a
smoothing of )A{', i.e. a deformation &‘S —~——— S such that for gerieral
s ¢ S the fibre )}.’s is smooth. Let §' be the component of the semi--
universal deformation on which this smoothing occurs. A theorem of
J. Wahl {(proved under a condition of globalizability, which Looijenga
(see [Lo]) proved to be always fulfilled) relates the dimension of S’
to the topology of )A{'s. To formulate this result, let n: Y — X be
the minimal resolution of ??f, let E be the exceptional divisor and

Pg = dim(R'x, Oy ) the geometric genus.

“Theorem { J. Waht, [Wa2],3.13¢)

dim(s") = (dim H'(6y) - 14p, - 2. X(E}) + 2. X (Xy)
where ) is the topological Euler characteristic. =

Note that the term in the big brackets only depends on X.

Now let X ¢ €3 a germ of a weakly normal surface and let Z be
its reduced singular locus. Corresponding to the notion of a smoothing
of the normalization X there is the notion of a disentanglement of

(£,X).
Dekinition (5.6):

A disentanglement of £ <X is an admissible deformation Zg“——Xg
over a basis S such that for a general s ¢ S the fibre X has only A_,
D_and T
point, ordinary triple point, c.f.3.17).

00,00 singularities ( ordinary double curve, ordinary pinch

Clearly, the normalization is of a disentanglement of X is a
smoothing of X. We want to compute X! )Afs) in terms of invariants
of X. We choose a Milnor representative for Xg (see [(Sil]). Let F be
the Milnor fibre of X. We can compare F with X and with Xg.
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fiemma (5.7) :

With the notations as above we have for a disentanglement:

D XX = WX+ X(E)-D+T

i) WF) = WX - WZY +2D

i) YUZ)= 2T - wZ) +1

where D is the number of D_ and T the number of T _ . - points in

the disentanglement.

proof : This is a simple excercise in topology. For i} one has to realize
that r)\('s —— X, is 1-1 except over % where it is 2 - 1 except over
the pinch points and the triple points. For ii} one compares F with
Xg. As one knows the local structure of the degeneration this is easy.
For iii) one has to use the fact that Zg is a flat family over S and in
such a family the jump in topology is the jump in Milnor numbers
(see [B-GD. ®

Corollary (5.8) :
i X (X = (i) - 2VD_(X) - u(®) +2) - T

i) dim{S" + 2T is an invariant of X and does not depend

on the particular disentanglement chosen.

prook 1 By [Jo],thm.3.2 one has X (F) = j(f} + VD + w(Z). Furthermore,
one has VD_ = D - 2T. Combining this with lemma (5.7) we get i).
Statement i) now follows from i} together with the guoted formula
of J.Wahl. &

Example (5.9) :

1) X of type D_ : X is smooth, hence X(Xg) = 1. One has j(f) = 1,
VD =1 and p(Z) = 0.

2) f = (yz)2 + (zx)2 + (xy)2 , X = {f = 0}. Here the normalization X is
Cone(|O(4})| : P! “——P%). The base space of X has two smoothing
components, one of dimension 1 and one of dimension 3 (see {Pil.
One calculates j(f) = 10, VD_, = 4, u(Z) = 2. For the one dimensional
smoothing component we have T = 1 , for the three dimensional

component one has T = 0.
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§ 6. Rational Quadeuple Points.

The rest of this paragraph is devoted to the study of a particular
class of normal surface singularities: the rational quadruple points.
We will determine the base space of the semi-universal deformation
of such a singularity. The answer turns out to be unexpectedly simple:
the isomorphism type of the base space of a rational quadruple point
is completely determined by two numbers, s and n. The base space
then is isomorphic to § x B{n), where S is a smooth germ of dimension
s and where Bin) is the space defined by the set of equations (6.14).

A rational quadruple point with the following star shaped resolution

graph n=1 n-1
A A
¢ --- coa i
H: <
® s -2
°--- - ®
~" Y
n-1 ni-i

has the factor B(ni in its base space. We call such a singularity an
n-star. At the moment of writing, we have been unable to prove most
of the following properties of the space B{(n}. It should not be too
hard to settle the following

Conjecture (6.1) :

The space Bi{n) has the following properties:

1) Embdim(B(n)) = 5n-1.

2) Bin) has n+1 irreducible components Y. , k=0, 1, . . . ,n with
dim(Yy) = 2n-1 +2k.

3) Malt(Yy) = (Illt), so only Yy and Y,, are smooth.

4) Y} has a smooth normalization.
(Property 1) is trivial and only included for sake of completeness.)

We know that (6.1) is true for n =1 and n = 2 and we know that Bin)

has, besides Y and Y, at least n-i other components.
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In general there are several approaches to find the semi-universal
deformation of a (normal surface) singularity X . In the first place
there is the direct method : one starts with the set of equations
defining X as embedded in some high ¢N and then one just computes.
For this to work in practice the equations must have a sufficiently
strong structure. For example rational triple points (see [Tj 2]} (Cohen-
Macaulay codimension 2), the cone over the rational normal curve of
degree n (see [Pi]), n lines in C® efc, can be handled in this way. It
seems however that the equations for the rational quadruple points
are not known sufficiently well to compute the base spaces for them
in this way. Secondly, there is the method of (partial} resalutions.
Here one starts with a (partial) resolution Y of X and then studies
the deformation theory of Y (which is usuwally much simper) and
finally one tries to blow down the deformed Y to get a deformation
of X. This methods works quite well to get information on the
components of the base space for rational singularities. For example,
all deformations of a resolution of X can be blown down and give
rise to the so-called Artin component of (the base space of) X (see
[Wal]). Recently, Kollar and Shepherd -Barron [K-S] developed a
method by which one can, for instance, determine the number of
components in the base space of a cyclic quotient singularity. (From
their approach it is also clear that the n-star singularity has( at least)
n+1 components in its base space.} However, the list of resolution
graphs of ‘rational quadruple points is quite long and contains many
‘exceptional' graphs, so this method seems to be quite involved.
Furthermore, it does not lead really to egmations for the base spaces.

We propose to use a different method: the method of projections.
Here one starts with X embedded in some high €N and then we project
X generically into €3, The image X then will have a curve Z as double
locus. By the theorems of § 4 the base space of admissible deformations
of £ &——X is up to a smooth factor the same as the base space of

X. Now essentially because T is Cohen-Macaulay of codimension 2 and
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X is given by ome equation, this is much more 'computable’ then
working directly with the equations for X. At first sight it seems that
this method has two serious drawbacks. In the first place one has to
choose a generic projection (to get an ordinary double curve) and
naturally given projections usually are not generic. In the second place
it is quite hard to find the explicit equation for X. For rational triple
points it is already a lot of work to write down explicit equations for
X corresponding to the different resolution graphs and for quadruple
points it becomes quite hopeless. We only give one example of our
(incomplete) list. (It appears that it is convenient to use the theory
of limits {see [Str]) to obtain equations for singularities that come

in series.)

Example (6.2) :

Equation :
f= (X—y).((x+y).(22+xy2} + (X*y)kﬂ.yz) + zl.(z2+xy2)2

Qualitative picture of Xp:= {(x,y,2)¢ ER'?’]f(x,y,z) =0}

°--- e @ Ha-
k' "I @®:=-2
2k - 1
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So it seems that we are stuck again. But now it turns out that the
first mentioned drawback can be turmed into an advantage: every
singularity has many generic projections with essentially distinct curves
T. It turns out that all curves T that could a priori occur as double
carves of projections of rational quadruple points actually do occur
in projections of the special n-star singularities mentioned above.
Because Def(X,X) mainly depends on the curve (in the sense of (3.27)
and (3.28)) we get that the base space of any rational quadruple point
is the same up to a smooth factor to the base space of a certain n-star
singularity. So one has to compute only the base space for the n-star
singularity and for this one can use a particular nice set of coordinates

and in this way we find the equations for the spaces Bin).

We start with some general numerical relations related to a generic

projection.
Lemma (6.3) :

Let X ¢ €N be a ({multi-) germof a) normal surface singularity, where
N = Embdim{¥) is the embedding dimension of X.Let L:CN — €2 be
a generic linear projection and let X=LiX) c €2 its image. Let Z be the
reduced singular locus of X and let H and H be the generic hyperplane

sections of X and X respectively. Then one has:

§ m: = Mult(X) = Mult(X) = Mult(H) = Mult(H) = N-1.
i) Mult(Z) = S(H) - s(H).

i) S(H) 2 m.(m-1)72 ; s(H)2m-1.

iv) )type(Z} 2N-3.

prook : i) is obvious because we have a linear projection. The inequality
expresses the minimality of the embedding of X in €N . Statement
ii) follows by moving the hyperplane H away from the special point.
We then get as intersection with X a curve with Mult(Z} ordinary
double points. But the jump in § in a family of curves is equal to the

$ of the special fibre of the normalization of the family (see [L-L-TJ,
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so in this case is equal to s(H). Statement iii) is a generality: given
the embedding dimension and the multiplicity of the curve, one has
a lower bound for its S-invariant, which is in the stated cases as above.
{exercise). Statement iv) follows the following: Z is Cohen-Macaulay
of codimension 2, so the equations for X are obtained as the maximal
minors of an tx(t+1) matrix. Then type{X) = t. As in (5.1} this gives
us an embedding of X into a smooth space of dimension 3+f, hence

N=t+3. . ®

Leemma (6.4) 1

IfXisa germ of a rational surface singularity, then all the inequalities

of (6.3) are in fact equalities.

prook : This lemma is a reflection of the strong minimality properties
enjoyed by rational singuolarities. For the fact that N = m + 1 we refer
to [Ar2]. For the statement that 5(H)=m-1 see([Str], 4.113). As now
H is a curve with minimal S-invariant, the same is true for a generic
projection H, hence §(H) = m.(m-1)/2 (we omit the proof). Then
Mult{Z) = {m-1).{m-2)/2. This can also be seen directly: by a resuit
of Karras (see [Ka]) every rational! m-tuple point has a normally flat
deformation to the cone over the rational normal curve of degree m.
When we project this cone to c? we get a cone over a rational curve
in P2 of degree m. Such a curve has (m-1).(m-2)/2 double points. As
clearly the multiplicity of ¥ does not change under this deformation,
Mult(X) has to have this value for all rational m-tuple points. The
statement about the type can be seen as follows: because X is Cohen-
~-Macaulay, the sub-scheme of c? given by Z N H has length
(m-1).(m-2)/2 and by (6.3} type{ZNH)zm-2. From these fact alone
it already follows that the ideal of ZNH is the ideal mm_i, where m
is the maximal ideal of C{y,z} = Ocz.o . Hence indeed type(Z)=type{ZNH)

= m-2. . b

_71_



Corollary (6.5) :

X rational triple point = I is smooth, i.e. X is a line singularity.

X rational quadruple point => I has multiplicity 3 and type 2.

pzooﬁ Immediate from (6.4). ®

Lemma / Definition (6.6) :

Let ¥ be a Cohen-Macaulay curve germ of multiplicity 3 and type 2.
Then the equations for & can be obtained as the 2x2-minors of the

following matrix:
y z+a b
M = ¢c y+d =z

Here a, b, ¢ and d are functions only depending on x. We define the
A-invariant of such a curve as:

AZ) : = minlord(a), ord{b), ord(c),ord(d)}
Conversely, if A{Z) = 1, then the minors of the above matrix do define

a Cohen-Macaulay curve germ of multiplicity 3 and type 2.

proof : Choose a generic projection of Z on a line with coordinate x.
Then T can be considered as the total space of a flat deformation of
T intersected with x = 0. This sub-scheme of €? is defined by m> =
(y2, ¥Z, z2 ). As these equations can be obtained from the matrix as
above (with a=b=c=d=0), we find the indicated form for the equations
of . (A similar bigger matrix can be written down for the curves

appearing as double locus of a rational m-tuple point with m25.) ®

Remazk (6.7} :

Curves of multiplicity 3 can be classified and J. Stevens has sent us
the complete list. However, it turns out to possible to pursue our

arguments without going into the fine structure of this classification.
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Proposition (6.8) :

Let T and coordinates X, y, z as in (5.15). Let I = (4, , A, ,A5) the
ideal of T defined by the minors of the matrix M. Consider the function
N N oy oy O,
& : = detiM) ¢ C{x}[y.z]; M:={ vy z+a b
¢ y+d z

where (o, 0y, 0g) := x'k.(dy~cz, ad-bc, az-by), A = AZ),
Then @ has the following properties: '

i) @[l

i) Mult(®) = 3; deg(y,z)(d)h 3; &(0,y,z) £ 0.

iii) Consider a 3x3-matrix h with entries in C{x,y,z} with generic
constant part h,, . Then the space X defined by ® + h.A.A = O has
precisely £ as singular locus, has a smooth normalization X and

the inverse image of X[}{x=0} on X is a smooth curve.

proof : Let us first indicate the geometrical significance of a function
& having properties i) and ii). The intersection of Z with the plane
X=c, C 4: 0 consists of three distinct points in the (y,z)-plane.
Multiplying together the three linear factors describing the lines
through the three pairs of points we get a polynomial ® of degree 3
in y and z with coefficients depending on x. A direct computation then
shows that ® can be written as the above determinant. The Cramer

matrix N of 2x2-minors of M is seen be to equal to

N A, oldy+BA, oA, +BA,
N =t A, vA +384, «aA,+BA,
by YA, +345 YA +34,

{where (e, B,7,5) = —x—k.(a,b,c,d)), which shows that the matrix M

satisfies the rank condition, so indeed @ ¢ [I. {(see (3.31) and (4.12)).

(We thank ]. Stevens for pointing out to us that our ® is equal to
2 A

(8 Ay = AZ )X
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Now we turn to statement iii) of the proposition. The curve X({x=0}
has an equation of the form ®(0,y,z) + G{y,z), where G starts with a
generic quartic in y and z, because of the genericity of h,. From this
it foliows that S(X[}{x=0}= 3. For small values of c¢ the curve
X({x = c} has three ordinary double points, hence the X({x = c} is
a S-constant family of plane curves. Consequently, X has precisely Z
as singular locus, X is smooth and the inverse image of X{x=0} on

M

X is smooth. =

Corollary (6.9) +

In the above situation we have [1/1% » €[x]/x*, and a C-basis for

F1/12 is given by @, x.®, . .., X" .® .

proof : This can be checked by a direct calculation, but it is much
nicer to apply here a beautiful theorem of D. Mond & R. Pellikaan
(see [M-P], thm.4.4 ) which implies that for a weakly normal surface
X in €3 with singular locus £ and with a Gorenstein normalization X
the module f\I/Iz is cyclic with generator the equation F of X and as
annihilator the (t-1}x(t~1}-minors of the (t+1}x{t+1} matrix of the
matrix factorization of F (as in (4.10)). In our case X is smooth by
(6.8)ii)) and t=2, so the annihilator of [I/I is the ideal of of the
entries of the matrix M of {6.8), which is the ideal (y,z,x" ). i

Now we have sufficiently detailed information about the structure of
the set of all weakly normal surfaces which have a curve % of

multiplicity three (and type 2): they all have an equation of the form
Fp,h(Z)’ = xP.® +(hA)A

where @ is as in (6.8) , h is a 3x3-matrix with entries in C{x,y,z}.
We let Xp,htz) be the surface germ defined by Fp'h(Z) = 0.
Note that by (6.9) Fy (Z) e 12 if p> A(D).
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Lemma (6.10) :

With the notation as above, let h be a matrix with generic constant
part h, . Then the tangent come of the surface Xp’h(E) is the cone

over a curve C C P2 , which has the following structure:

Case A: MZ) 2 2, p 2 2 ; C consists of four distinct lines, all passing
through a single common point.

Case B: AM(Z) 2 2, p=1; C is an irreducible rational quartic curve
with a unique singular point of type D 4 Ds or Eg .

Case C: AMZ) =1, p=1; C is an irreducible rational quartic curve

with one (Ag ), two (Ag + A, ) or three (3.A, ) singular points.

proof : If p 2 2 then the tangent come of X, p{X) is determined by
the term (h.A).A, because & has muitiplicity 3. If A(Z)22, then the
lowest order terms in the matrix M of (6.6) are the y and z, so for
generic h we get as tangent cone a general quartic in y and z, which
settles case A. If p =1 and A(£)22, then the lowest order term of Fp,h
contains also a term x.®. Corresponding to the cases that ©(0,y,z) is
equivalent to y2 + z3, y2.z, y® we then find a D4, Dy or an E4 on C,
which settles case B. The remaining case is A{Z) = 1, which is most
involved. If we replace a, b, ¢, d in the matrix M of (6.6)by their linear
parts, the minors of it define still a {possibly non-reduced) curve of
multiplicity 3, which is the cone over a subscheme of P2 of length
3. One can check that an irreducible quartic C which contains such a
subscheme in its singular locus has to have a total § equal to 3, hence

is rational. For generic h only the indicated cases do occur. ®

Theorem (6.11) :

For generic h and 1 < p < A(%) the surface Xp’ p (£} has as normalization

a p-star singularity.
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proof : We blow up €3 at the origin. Let £' and X' be the strict
transforms of Z and Xp,h {Z). X' will have the tangent cone of Xp.h(Z)
as exceptional divisor. If p22, then A(Z) 2 2, so Z' will stili be a curve
germ of multiplicity 3, and MEZ"=A(Z)-1, as one easily sees from
blowing up the matrix M of (6.6). Also, by (6.10), the exceptional
divisor of X' will consist of four lines through a point, which is aiso
the singular point of £'. Around this point the surface X' will have
a singularity of type Xpﬂl, n' €L, as follows by looking at the equation
Fp,h in the x-chart. Because the tangent cone is reduced, X' will be
smooth apart from this singularity. As only the constant part of h
enters in the genericity assumption for (6.10) and the constant part
of h' is the same as that of h, we can thus inductively go further with
blowing uﬁ. After p-1 blow ups we have introduced four chains of
rational curves of lenght p-1 and we are left with a singularity of type
Xl,h"(z")- Now there are two cases: A(Z") 2 2 and A(Z™=1. These
correspond to the cases B and C of (6.10). In each of these cases the
tangent cone of Xi’h--(Z") is an irreducible rational quartic curve. In
the first case we find after one further blow up still a unique special
point. of type XO,h"'( £"), which has by {6.8) a smooth normalization
{and the inverse inverse image of the quartic is also smooth). In the
second case we get after blowing up Xj,hn(Z") a surface X™ with
singular locus £" which can have one, two or three disjoint parts. We
claim that X' again has a smooth normalization and that the inverse
image of the quartic is a}lso smooth. This can be seen by applying the
same idea as in the proof of (5.17)iii) : around a pért of ' the germ
of X™ can be considered as the total space of a family of curves with
as special fibre thé (germ of the) exceptional quartic. It is not hard
to see that this is a family with constant § {equal to 1, 2 or 3), which
proves the claim. Our conclusion is that Xp,h(Z) for generic h has
as normalization a singularity which has as resolution graph the graph
of the p-star singularity. By keeping track of the order of vanishing
of the function x along all exceptional curves, one can compute all

the self- intersections and they are as for the p-star singularty. ®
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Corollary (6.12) :

Let X be weakly normal surface in €2 with {reduced) singular locus
5. Assume that ¥ has multiplicity 3 and type 2. Let I be the ideal of
T and =0 the equation of X. Then the base space of the semi-universal
deformation of the normalization X of X is up to smooth factors the

same as the base of the p-star singularity, where p = dim(_f 7 +(f))).

proof + Asone has [I/I° ~ C[x]7(x™) by (6.9), there are only a finite
number of possibilities for [1/ (1% +(£)), which by (6.11) are all realized
by projections of p-star singalarities. Now apply (3.28), (4.3) and (4.4).

|

To complete the picture, we compute the hull of Def(Z,X} for a
particular nice projection of the n-star singularity.

Let the curve Z_ be defined by the ideal
1= (AAgA,) = (Mg My, My M,, M, M,)
where M, = L,(y,z) + X" and L, are linear forms with L;+L,+L,= 0.

Lemma (6.13) :

A basis for Té is given by the classes of the normal vectors
x1.A,, x7.A,, x9.A, (g=0,1, . . ., n-1) and x%.B (g=0,1,. .. ,n-2)

-

where the A, and B are

Ay 5 (8,,85,85) —— (My-M,, 0, 0)

Ay: ., ——— (0, My-M,, 0)
Agi —— (0, 0, M, - M,)
B: (MM, My+M,, M +M,)

A basis of Tors(sz"} is given by the classes of the differentials
3x¥ M, .d(M, - M),
3x% M, .diM, -M,), ((g=0,...,n-1).
3xT M,.dtM, - M, )

proof: By a direct computation. =
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Consider the surface X defined by E:= A,z + Azz + A32 = 0, which has
as normalization ﬁn an n-star singularity. We determine the semi -
universal deformation of '}\{’n by computing essentially the semi -
universal admissible deformation of En;b X, - To formulate the

result we need some more notation.

Definition {6.14) :

i) Let be given a natural number n21and P = ¥ .o Py x* e x].
We define the bracket [P] as [P]: = 2 Py xEB

k=n
ii) Let Cfa, ,a, ,a5 ,e,b] the polynomial ring in the coefficients of
polynomials a, , a, , a, ,e ¢ CLx] of degree n-1 and b ¢ Clx] of
degree n-2.(So it is a polynomial ring in 3Sn-1 indeterminates and

if n=1 there is no b.)

iii) Consider the following conditions on a, , e and b :
e.a, - [e.aj].b + [[e.aj].b:[.b - [[[e.aj].b].b].b+ ...=0 mod x"
(The dot is multiplication of polynomials and j = 1, 2, 3.}
Note that this a priori infinite series in fact breaks off, so these

conditions indeed lead to polynomials in the coefficients of the
a; , e and b. Let J, be the ideal in C[a, ,a, ,a5 ,b,e] generated by

these polynomials.

iv) Let B(n) := Spec(C{a,,a,,a,,b,el/] ).

“Theozem (6.15) :

i) The base space C(n) of a semi-universal deformation of the n-star
singularity 'in is isomorphic to B(n)x € (n22) or B(1) (n=1). (The
factor € corresponds to the cross-ratio of the four points on the

central P! in the resolution graph of the n-star.)

ii) A projection of a semi-universal family for )Aén over C(n) is given

by the admissible family defined by the equation

AfA +o +\.B =0
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where (remember the vector notation and summation conventions.):

* B =a+33 9.4 +bB+o.
a, and b as in {6.14)ii).
A, and Bas in {6.13)).
p= ia,f + a,.8, + ag.a5 t+ aq.ay). (L,L,1)
(A describes the semi-universal deformation of Z_.)

[=a]
=1 % -

oy = e.(M;, My, My},
3
oy = e.b.(1,1,1) + Doy 2.0.8,.V, - 2131 [e.a, ] W, .

* o=

g = [edaya, + ag.ag + aa.al)](l,l,l) - Zé’, 2le.a,]b.V; +
+ 32 ([ealblW,.

Cpeq = - [«;.b] for ix3.

e and b as in (6.14)ii).

Vv, =(0,-1,1), V, = (4,0,-1), V, = (-1,1,0).

W,= (0,-(M,+M,), M{*My) , W, = (M,#M,,0,~(My+My),

W= (~(M,+M,), My+Mg, 0).

* The a,, e and b satisfy the equations for B(n) (6.14}iv).

* A e C is the equisingular parameter (absent if n=1).
B = (M;M,,0,0).

We omit the proof, which consists of many pages of straightforward
but very tedious computations. Especially we would like to thank J.
de Jong for his enthousiastic persistence to complete the computation.
A first step in the computation consists of writing down an admissible
first order deformation which gives precisely T§r . Then one proceeds
along the lines of (3.23). (Note that example (3.24) is the same as
the above one with n=1.) It is our experience that the bases chosen
in (5.22) are quite convenient, but there might be better ones. In the
deformation of £ there appear at most quadratic terms. This one of
the reason that after three steps an inductive pattern for the ¢,

emerges. X
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Remazk (6.16) 1

It is easy to see two of the components of the space B(n). The first
one is obtained by putting e=0. Then the a, and b can be arbitrary,
so it has dimension 4n-1. This corresponds to deformations 'which
stay in 12 and gives rise to the Artin component. A second component
is obtained by putting the a, equal to zero and thus has dimension
2n-1. These deformations include the ones for which Z_ is not deformed
at all. Note further that the equations for B(n) are linear in the a,.
We expect that the space B(n) is flat over the b-parameter. For b=0
the equations for B(n) define linear spaces with certain multiplicities.

These facts suggest the truth of conjecture (6.1).

We conclude this paragraph by giving some adjacencies for ratiomal
quadruple points which are quite easy to see when projected into C3,

but which are, so far as we know, not so easy to see in an other way.

Examples (6.17) 1

i) The admissible deformation of % C——X_ described by the equation
(A + t.B + t2(1,1,0)2 = 0, gives for generic t values a surface which
has as normalization a surface with n singular points isomorphic
the cone over the rational normal curve of degree 4. Indeed, the

deformation of the singular locus looks like:

- v‘.' -
» b £y P
Pl s o0
s ra ) P

/
/

We can perform an additional deformation of this surface in such a

way that at p of those n special points we get a triple point whereas
at the other n-p points we smooth out the curve. This leads to
deformations of the n-star singularity having precisely p triple points

(0<p<n). Hence B(n) has at least n+l components.
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ity J. Wahl describes the following deformation [Wai]:

s:-‘
®=-2

When projected to €3, it can be realized by the admissibie deformation
given by the equation

£, = (2% + (yly-x2 + )2 + (z(z-x2 + tx)? + Ltxyzly+z-x"+tx) = 0.
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